# DAY 2 EXERCISES Select a free account from the table below and write your name to the "User" column. Passwords can be found in Zoom chat. | Training account | | User | | ---------------- | ----- | ------------------ | | training085 | | Neha | | training086 | | Sreeram | | training087 | | Axel-Jan | | training088 | | Purbaj | | training089 | | Jose Manuel | | training090 | | James Akash | | training091 | | Samuel Boobier | | training092 | | Aarne Klemetti | | training093 | | Margherita | | training094 | | Bruno | | training095 | | Enrique | | training096 | | Prakshal | | training097 | | Prince | | training099 | | Javed Razzaq | | training098 | | Filip | | training100 | | James Nelson | | training101 | | Christian Meesters | | training102 | | Kimmo Tikka | | training103 | | Fabio Pratelli | | training104 | | Ramkumar | | training105 | | Narc F | | training106 | | Trang | | training107 | | Tiziano | | training108 | | Michel | | training109 | | | | training110 | | Estev | | training111 | | | | training112 | | | | training113 | | | | training114 | | | | training115 | | Sushanth Keshav | | training116 | | | | training117 | | Tomas F | | training118 | | | | training119 | | | | training120 | | | | training121 | | Jukka | | training122 | | Victor T | | training123 | | | | training124 | | | | training125 | | | | training126 | | | | training127 | | CVA | | training128 | | | | training129 | | Ayush Chaturvedi | |training130 | |Marija | ## Exercise 5 | Dataset | Framework | Network architecture | Test accuracy | Submitter | | ------- | --------- | --------------------------- | ------------- | ----------- | | dvc | Keras | Simple CNN | 70.55% | Markus | | dvc | Keras | VGG16 reuse | 88.61% | Markus | | dvc | Keras | VGG16 finetuned | 92.41% | Markus | | gtsrb | Keras | Simple CNN | 59.53% | Markus | | gtsrb | Keras | VGG16 reuse | 42.95% | Mats | | gtsrb | Keras | VGG16 finetuned | 62.40% | Mats | | dvc | Keras | Simple CNN Scratch | 70.88% | Jose Manuel | | dvc | Keras | Simple CN Scratch epochs=30 | 74.53% | Jose Manuel | | dvc | Keras | Simple CNN Pretrained | 88.37% | Jose Manuel | | dvc | Keras | Simple CNN Fine Tune | 92.88% | Jose Manuel | | gtsrb | Keras | VGG16 Reuse | 45.27% | Jose Manuel | | gtsrb | Keras | VGG16 finetuned | 63.33% | Jose Manuel | | dvc | Keras | Simple CNN | 73.41% | Prakshal | | dvc | Keras | VGG16 CNN Pretrained | 88.7% | Prakshal | | dvc | Keras | VGG16 CNN Finetune | 92.62% | Prakshal | | dvc | Keras | Simple CNN tfr | 69.79% | Prakshal | | dvc | Keras | Simple CNN | 65.38% | Tomas | | dvc | Keras | VGG16 pretrained | 88.19% | Tomas | | dvc | Keras | Mobilnet Finetune | 96.90% | Tomas | | dvc | Keras | Mobilnet Reuse | 96.51% | Tomas | | dvc | Keras | Simple CNN | 69.05% | Margherita | | dvc | Keras | Simple CNN Pretrained | 83.59% | Margherita | | dvc | Keras | Simple CNN Finetune | 92.51% | Margherita | | gtsrb | Keras | Simple CNN | 63.44% | Margherita | | gtsrb | Keras | Simple CNN Pretrained | 46.13% | Margherita | | gtsrb | Keras | Simple CNN Finetune | 60.68% | Margherita | | dvc | Keras | simple cnn | 70.90% | Axel-Jan | | dvc | Keras | simple cnn pretrained | 90.76% | Axel-Jan | | dvc | Keras | Simple | 68.72% | Purbaj | | dvc | Keras | Simple | 71.30% | Prince | | dvc | Keras | Pre-trained | 85.53% | Prince | | dvc | Keras | Fine tuned | 92.59% | Prince | | gtsrb | Keras | Simple | 59.34% | Purbaj | | dvc | Keras | Simple | 71.98% | Enrique | | dvc | Keras | VGG16 reuse | 88.04% | Sreeram | | dvc | Keras | VGG16 finetuned | 91.99% | Sreeram | | dvc | Keras | VGG16 reuse | 87.90% | Neha | | dvc | Keras | VGG16 finetuned | 92.47% | Neha | | dvc | Keras | Pre-Trained | 92.29% | Purbaj | | gtsrb | Keras | Pre-Trained | 62.64% | Purbaj |dvc | Keras | Simple | 72.4% | James | dvc | Keras | Simple | 73.20% | Kimmo | dvc | Keras | reuse | 83.41% | Kimmo | dvc | Keras | finetune | 92.28% | Kimmo | dvc | PyTorch | simple cnn | 67.39% | Javed | --- ## Exercise 6 | Framework | Network architecture | Test accuracy | Runtime | Submitter | | --------- | ---------------------- | ------------- | -------------------------------------- | ----------- | | Keras | Default RNN | 78.22% | 2:59 | Markus | | Keras | Default CNN | 85.30% | 0:50 | Mats | | Keras | Default BERT | 81.60% | 15:09 | Mats | | Keras | RNN | 82.63% | 02:55 | Kimmo | | Keras | CNN | 87.02% | 03:38 | Kimmo | | Keras | CNN w 20 epochs | 94.88% | 01:10 (?) | Kimmo | | Keras | BERT | 82.92% | 11:30 | Kimmo | | Keras | RNN | 76.65% | 04:48 | Jose Manuel | | Keras | CNN | 88.42% | 02:50 | Jose Manuel | | Keras | BERT | 82.07% | 12:03 | Jose Manuel | | Keras | RNN Adamax n_epochs=30 | 55.37% | 03:43 | Jose Manuel | | Keras | RNN n_epochs=30 | 90.50% | 04:45 | Jose Manuel | | Keras | CNN | 86.7% | 00:52 | Prakshal | | Keras | RNN | 80.55% | 04:03 | Prakshal | | Keras | BERT | 81.83% | 11:19 | Prakshal | | Keras | RNN | 82.42% | 2:47 | Tomas | | Keras | CNN | 86.33% | 1:09 | Tomas | | Keras | BERT | 82.55% | 9:33 | Tomas | | Keras | CNN | 89.15% | 0:56 (sacct -l - j JOBID --> cpu time) | NFF | | Keras | RNN | 79.80% | 2:41 (same) | NFF | | Keras | Bert | 83.25% | 9:19 (same) | NFF | | Keras | RNN | 80.77% | 3:11 | Purbaj | | Keras | CNN | 87.60 | 1:45 | Purbaj | | Keras | CNN | 82.53 | 11.04 | Sreeram | | Keras | CNN with epochs=50 | 96.82% | 2.04 | Sreeram | | Keras | RNN | 78.57% | 11:16 |Neha | | Keras | CNN | 86.37% | 02:42 | Neha | | Keras | BERT | 83.10% | 00:50 | Neha | | Keras | CNN | 88.10% | | Axel-Jan | | Keras | RNN | 77.93% | | Axel-Jan | | Keras | BERT | 82.53% | | Axel-Jan | | Keras | CNN | 87.12% | 2:08 | Margherita | | Keras | RNN | 82.40% | 4:17 | Margherita | | Keras | BERT | 83.17% | 11:25 | Margherita | | Keras | BERT | 82.38 | 12:29 | Purbaj | | Keras | CNN epoch =100 | 96.75% | 3:44 (seff) | NFF | | Keras | RNN | 82.88% | 2:46 | Bruno | | Keras | CNN | 86.87% | 0:51 | Bruno | | Keras | BERT | 82.70% | 11:18 | Bruno | | Keras | CNN | 90.18% | 0:51 | Enrique | | Keras | RNN | 78.68% | 2.58 | Enrique | | Pytorch | BERT | 81.68% | 24.58 | Ayush | | Pytorch | CNN | 73.68% | 4.58 | Ayush | | Pytorch | CNN batchsize=32,epoch=50 | 73.68% | 2.58 | Ayush | | Pytorch | RNN | 66.68% | 24.58 | Ayush | | Keras | BERT | 80.83% | 1:52:30 | Enrique | |KERAS|CNN|2:44|88.27%|Marija| ## Exercise 7 | Framework | Network | Approach | GPUs | Test accuracy | Runtime | Submitter | | --------- | -------------------------- | ---------------- | ---- | ------------- | ------- | ----------- | | Keras | Simple CNN | Baseline | 1 | 70.75% | 0:36 | Mats | | Keras | Simple CNN | MirroredStrategy | 4 | 69.12% | 1:03 | Mats | | PyTorch | Simple CNN | DataParallel | 4 | ? | 3:42 | Mats | | Keras | Simple CNN | Horovod | 2 | 64.53% | 0:34 | Mats | | Keras | Simple CNN | MirroredStrategy | 2 | 73.98% | 1:46 | Jose Manuel | | Keras | Simple CNN | MirroredStrategy | 4 | 68.84% | 2:44 | Jose Manuel | | Keras | Simple CNN | Horovod | 4 | 70.53% | 3:25 | Sreeram | | Keras | Simple CNN | Horovod | 4 | 65.80% | 3:25 | Neha | | Keras | Simple CNN | MirroredStrategy | 2 | 71.82% | 1:39 | Javed |
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up