![](https://i.imgur.com/FICBHvt.png) ![](https://i.imgur.com/evE3GlG.png) [**PRACE AUTUMN SCHOOL 2021**](https://events.prace-ri.eu/event/1188/) [**INTRODUCTION TO DEEP LEARNING**](https://hackmd.io/@pdl/Skn7I48MY) # CLUSTER EXERCISES ## Exercise 1 ### cifar10 | Submitter | Model description | Validation accuracy | Test accuracy | | --------- | ----------------- | ------------------- | ------------- | |Rajendra| Default parameters| 0.3863| | Neha | 2 hidden layers = 50,50, drop rate= 0.001|42.77%|43.4%| | Sreeram | 2 hidden layers = 50,30, drop rate= 0.001|41.96%|42.71%| | Markus | Default | 0.3672 | 0.3693 | |Febrian|lr:0.001-hidden1:50-hidden2:30-dropout:0.0-eval:True||41.70%| |Greg|2 layers 100,100, drop rate 0.05, epochs 100|46.14%|44.8%| | Markus | Mats's best result from TensorBoard | 0.4626 | | |Rajendra| Hidden1 50 Hidden2 50 Dropout 0.001| 0.3939 |Rajendra| Hidden1 50 Hidden2 25 Dropout 0.2| 0.2363 |Rajendra| Hidden1 50 Hidden2 25 Dropout 0.1| 0.1870 |Ilja| --hidden1=2400 --hidden2=0 --dropout=0 --lr=0.001 | 0.4564 | 46.12% | |Rajendra| Hidden1 50 Hidden2 40 Dropout 0.001| 0.4204 |Rajendra| Hidden1 50 Hidden2 40 Dropout 0.0| 0.4265 ## Exercise 2 ### dvc (dogs vs cats) | Submitter | Model description | Test accuracy | | --------- | ----------------- | ------------- | | Markus | original dvc-cnn-simple.h5 | 73.03% | | Markus | original dvc-vgg-reuse.h5 | 87.64% | | Markus | original dvc-vgg-finetune.h5 | 91.52% | | Febrian | original dvc-vgg-finetune.h5, 18 epoch | 92.34% | | Neha | original dvc-vgg-finetune.h5 | 91.68%| | Sreeram | original dvc-cnn-simple | 73.14% | | Febrian | pytorch_dvc_cnn_pretrained.py, finetuned accuracy | 95.9% | ### gtsrb (traffic signs) | Submitter | Model description | Test accuracy | | --------- | ----------------- | ------------- | | Markus | original gtsrb-cnn-simple.h5 | 72.58% | | Markus | original gtsrb-vgg-reuse.h5 | 51.46% | | Markus | original gtsrb-vgg-finetune.h5 | 62.38% | ## Exercise 3 | Submitter | Model description | Test accuracy | Runtime | | --------- | ----------------- | ------------- | ------- | | Markus | original tf2-20ng-rnn | 80.37% | 3:59 | | Markus | original tf2-20ng-cnn | 87.05% | 1:18 | | Rajendra | original tf2-20ng-cnn | 89.90% | | | Sreeram | original tf2-20ng-cnn | 87.75% | 5:45 | | Sreeram | original tf2-20ng-rnn | 81.05% | 2:01 | |Neha| original tf2-20ng-cnn|87.58%| 6:58| |Neha| original tf2-20ng-rnn|81.02%| 2:33| ## Exercise 4 Reporting only validation accuracy is fine, no need to run evaluate this time (unless you want to). | Submitter | Model description | Val accuracy | Test accuracy | Runtime | No of GPUs | | --------- | ------------------------------ | ------------ | ------------- | ---------- |------------| | Rajendra | original tf2-dvc-cnn-simple.py | 0.7278 | | 0:00:25.81 | 1 | | Rajendra | original tf2-dvc-cnn-simple-hvd.py |0.6966 | | |2 | | Mats | tf2-dvc-cnn-simple with 2 GPUs | 0.7000 | | 0:00:40.75 | 2 | | Mats | tf2-dvc-cnn-simple with 4 GPUs | 0.7098 | | 0:02:28.48 | 4 | | Mats | tf2-dvc-cnn-pretrained (reuse only) with 1 GPU | 0.8982 | | 0:00:30.81 | 1 | | Mats | tf2-dvc-cnn-pretrained (reuse only) with 2 GPUs | 0.8771 | | 0:00:29.41 | 2 | | Sreeram | tf2-dvc-cnn-simple with mirrored strategy |0.7067| 62.38% |0:02:37.00|4| | Neha | tf2-gtsrb-cnn-simple with mirrored strategy|0.8032||0:57:21.0|4| ## Exercise 5 | Submitter | Model description | Test accuracy | Runtime | | --------- | ----------------- | ------------- | ------- | | Markus | original tf2-20ng-rnn | 80.37% | 3:59 | | Markus | original tf2-20ng-cnn | 87.05% | 1:18 | | Mats | original tf2-20ng-bert| 83.30% | 14:13 | | Rajendra | original tf2-20ng-cnn | 88.40% | | | Rajendra | original tf2-20ng-rnn | 82.45% | | | Rajendra | original tf2-20ng-bert| 82.90% |11.35 | |Neha| original tf2-20ng-bert|82.55%| 0:11:29| |Sreeram| original tf2-20ng-bert|81.95%| 0:10:08| |Ilja| original tf2-20ng-bert|80.77%| 9 min| ## Exercise 6 **cifar10** | Submitter | Hyperparameter values | Validation accuracy | | --------- | --------------------- | ------------------- | | Markus | 'epochs': 10, 'dropout': 0.0, 'lr': 0.001, 'hidden1': 495, 'hidden2': 46 | 0.4644 | | Rajendra |epochs':10,'dropout':0.0,'lr':0.001, 'hidden1':296.89,'hidden2':103.68|0.4726| |Murali|'dataset': 'cifar10', 'epochs': 10, 'dropout': 0.0, 'lr': 0.001, 'hidden1': 468.64888761686524, 'hidden2': 94.91400525177829|0.465| | Markus | 'epochs': 10, 'dropout': 0.0, 'lr': 0.001, 'hidden1': 436, 'hidden2': 127 | 0.4757 | |Neha|'dataset': 'cifar10', 'epochs': 10, 'dropout': 0.0, 'lr': 0.001, 'hidden1': 416.21516296827417, 'hidden2': 117.7365644492115|0.470200| |Sreeram|'dataset': 'cifar10', 'epochs': 10, 'dropout': 0.0, 'lr': 0.0005, 'hidden1': 432.20447993164964, 'hidden2': 70.87518680387407|0.47139| | ~ilja | {'dataset': 'cifar10', 'epochs': 10, 'dropout': 0.0, 'lr': 0.000130, 'hidden1': 273, 'hidden2': 902}| 0.507 | | Markus | 'epochs': 10, 'dropout': 0.0, 'lr': 0.001, 'hidden1': 475, 'hidden2': 118 | 0.4756 | | Febrian | {'dataset': 'cifar10', 'epochs': 10, 'dropout': 0.0, 'lr': 0.0005, 'hidden1': 465, 'hidden2': 124} | 0.492 |