# 深度優先搜索 (DFS)
深度優先搜索通常使用 Stack (堆疊) 來實現
### 二元樹的深度優先搜索
二元樹的深度優先搜索總共有三種方式
#### 前序遍歷 (preorder traversal)
```python!
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.res = []
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if root:
self.res.append(root.val)
if root.left:
self.preorderTraversal(root.left)
if root.right:
self.preorderTraversal(root.right)
return self.res
```
#### 中序遍歷 (inorder traversal)
```python!
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.res = []
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if root:
if root.left:
self.inorderTraversal(root.left)
self.res.append(root.val)
if root.right:
self.inorderTraversal(root.right)
return self.res
```
#### 後序遍歷 (postorder traversal)
```python!
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.res = []
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if root:
if root.left:
self.postorderTraversal(root.left)
if root.right:
self.postorderTraversal(root.right)
self.res.append(root.val)
return self.res
```
## 圖的深度優先搜索
### 鄰接列表
```python=
graph = [[1,2,4],[0,3],[0],[1],[0,5],[4]]
visit = [0] * len(graph)
stack = [0]
while stack:
node = stack.pop()
visit[node] = True
print(node)
for neighbor in graph[node]:
if not visit[neighbor]:
stack.append(neighbor)
```