# Derivation of least-squares estimation $y = Xp$ $\min_p \|y - Xp\|_2^2$ $\|x\|_2 = \sqrt{x_1^2+x_2^2+\dots+x_n^2}$ $\|x\|_1 = |x_1|+|x_2|+\dots+|x_n|$ $\min_p \|y - Xp\|_2^2 + \lambda\|p\|_1$ $\min_p \dfrac{1}{2}(y - Xp)^\intercal (y - Xp)$ $\min_p \dfrac{1}{2}\left[y^\intercal y - y^\intercal Xp - (Xp)^\intercal y + (Xp)^\intercal Xp\right] \qquad a^\intercal b = b^\intercal a$ $\min_p \dfrac{1}{2}\left[y^\intercal y - 2y^\intercal Xp + (Xp)^\intercal Xp\right]$ $-\underbrace{y^\intercal X}_{a^\intercal}\underbrace p_x + p^\intercal X^\intercal Xp \qquad \dfrac{\text d (a^\intercal x)}{\text dx} = a$ $\qquad \dfrac{\text d x^\intercal A x)}{\text dx} = A + A^\intercal$ $-X^\intercal y +X^\intercal Xp=0$ $p=(X^\intercal X)^{-1} X^\intercal y$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up