# Discrete-time system from continuous $G(s) = \dfrac{K}{Ts+1}$ $t = k\Delta T$ $G(s) = \dfrac{Y(s)}{U(s)} = \dfrac{K}{Ts+1} \ \Rightarrow \ Y(s)(Ts+1) = KU(s)$ $Ty'(t) + y(t) = K u(t)$ $T\dfrac{y_{k+1}-y_k}{\Delta T} + y_k = K u_k$ $T\dfrac{y_{k+1}}{\Delta T} + (1-\frac{T}{\Delta T})y_k = K u_k\ \Rightarrow \ y_{k+1} = -(1-\frac{T}{\Delta T})\frac{\Delta T}{T}y_k + K\frac{\Delta T}{T} u_k$ $y_{k+1} = -(\frac{\Delta T}{T}-1)y_k + K\frac{\Delta T}{T} u_k$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up