# Probability Formulas ### Moments The $r^{th}$ moment about mean is denoted by - $$ \mu_r^\prime=E(x^r)=\begin{cases} \sum x^r.f(x) & \text{For DRM} \\ \int_{-\infty}^{\infty} x^r.f(x) dx & \text{For CRM} \end{cases} $$ --- ### Moment Generating Function (MGF) $$ M_x(t)=E(tx)=\begin{cases} \sum e^{tx}.f(x) & \text{For DRM} \\ \int_{-\infty}^{\infty} e^{tx}.f(x) dx & \text{For CRM} \end{cases} $$ #### Theorem $$ \bigg[\frac{d^r M_x(t)}{dt^r}\bigg]_{t=0}=\mu_r^\prime $$ --- ## Joint Probability Distribution $$ P((X,Y) {\Large\epsilon} A) = \int\int_A f(x,y) dx $$ --- ## Marginal Dstribution $$ g(x)=\begin{cases} \sum_{y}f(x,y) & \text{For DRM} \\ \int_{-\infty}^{\infty} f(x,y) dy & \text{For CRM} \end{cases} h(y)=\begin{cases} \sum_{x}f(x,y) & \text{For DRM} \\ \int_{-\infty}^{\infty} f(x,y) dx & \text{For CRM} \end{cases} $$ --- ## Conditional Distribution $$ f(y|x)=\frac{f(x,y)}{g(x)} \hspace{1cm} \text{Provided } g(x)>0 $$ $$ f(x|y)=\frac{f(x,y)}{h(y)} \hspace{1cm} \text{Provided } h(y)>0 $$ --- ## Chebyshev's Theorem $$ P(\mu-k\sigma<X<\mu+k\sigma)\geq1-\frac{1}{k^2} $$ --- ## Poisson's Distribution $$ P(x)=\frac{e^{-\lambda}\lambda^x}{x!} $$ #### Mean $$\mu=\lambda$$ #### Variance $$\sigma=\lambda$$ --- ## Skewness and Kurtosis ### Skewness $$ \beta_1=\frac{\mu_3^2}{\mu_2^3}=\frac{1}{\lambda} $$ $$ \beta_1 \begin{cases} <0 & \text{Negatively skewed} \\ =0 & \text{Symmentrical} \\ \text{> } 0 & \text{Positively Skewed} \\ \end{cases} $$ #### Kurtosis $$ \beta_2=\frac{\mu_4}{\mu_2^2}=\frac{1}{\lambda}+3 $$ $$ \beta_2 \begin{cases} <3 & \text{Platykurtic} \\ =3& \text{Mesokurtic} \\ \text{> } 3& \text{Leptokurtic}\\ \end{cases} $$ ## Weak Law of Large Numbers $$ P\Bigg[\Bigg|\frac{X_1+X_2+....+X_n}{n}\Bigg|- \mu\geq\epsilon\Bigg]\to 0 \text{ as } n\to\infty $$ ## Moment Formulaes * $\mu_1=0$ * $\mu_2=\mu_2^\prime-(\mu_1^\prime)^2$ * $\mu_3=\mu_3^\prime-3\mu_1^\prime \mu_2^\prime+2(\mu_1^\prime)^3$ * $\mu_4=\mu_4^\prime-4\mu_1^\prime \mu_3^\prime+ 6\mu_2^\prime(\mu_1^\prime)^2-3\mu_1^\prime$ ## Binomial Distribution $$\mu = np$$ $$\sigma = npq$$