Pablo Bernabeu
Lancaster University, 26 Nov 2020
Earlier, weaker computers
Now, computational power
In addition to statistical assumptions, linear mixed-effects models help uphold theoretical assumptions about the generalisability of findings (Yarkoni, 2020).
Visualise fixed regression and the three variations of random effects.
Image source: Midway (2021), https://bookdown.org/steve_midway/DAR/random-effects.html
R code structure:
Minimum five or six levels in nesting factor (Bolker, 2015; Singmann & Kellen, 2019)
Approach: Prioritising conservativeness
Brauer and Curtin (2018) - see Table 17.
Singmann and Kellen (2019) - see fragment from 'As a first step, it seems advisable to remove the correlations among random slopes'.
Approach: Prioritising conservativeness
Singmann and Kellen (2019) - see fragment from 'When fitting mixed models with complicated random effects structures, convergence warnings appear frequently.'
Brown (2020) - see fragment from 'The one I recommend starting with is changing the optimizer'.
Approach: Remaining conservative without losing power
Standardised effect sizes are tricky due to random effects structure (Piepho, 2019).
Lorah (2018) offers options for fixed and random effects.
see also Singmann and Kellen (2019) - section 'Effect Sizes For Mixed Models'.
Luke (2017) - Kenward-Roger or Satterthwaite methods the most robust
Singmann and Kellen (2019) - afex::mixed()
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001
Bernabeu, P., & Lynott, D. (2020). Web application for the simulation of experimental data (Version 1.2). https://github.com/pablobernabeu/Experimental-data-simulation/
Bolker, B. M. (2015). Linear and generalized linear mixed models. In G. A. Fox, S. Negrete-Yankelevich, & V. J. Sosa (Eds.), Ecological statistics: Contemporary theory and application. Oxford, UK: Oxford University Press.
Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159
Brown, V. A. (2020). An introduction to linear mixed effects modeling in R. PsyArXiv. https://doi.org/10.31234/osf.io/9vghm
Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359. https://doi.org/10.1016/S0022-5371(73)80014-3
Lorah, J. (2018). Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-scale Assessments in Education, 6, 8. https://doi.org/10.1186/s40536-018-0061-2
Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001
Meteyard, L., & Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092
Piepho, H.‐P. (2019). A coefficient of determination (R2) for generalized linear‐mixed models. Biometrical Journal, 61, 860–872. https://doi.org/10.1002/bimj.201800270
Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H, Teplitsky, C., Reale, D., Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 00, 1– 12. https://doi.org/10.1111/2041-210X.13434
Singmann, H., & Kellen, D. (2019). An Introduction to Mixed Models for Experimental Psychology. In D. H. Spieler & E. Schumacher (Eds.), New Methods in Cognitive Psychology (pp. 4–31). Hove, UK: Psychology Press. http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf
Yarkoni, T. (2020). The generalizability crisis. Behavioral and Brain Sciences, 1-37. https://doi.org/10.1017/S0140525X20001685