Math 181 Miniproject 3: Texting Lesson.md --- Limit definition of the derivative === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey, I missed the last class and was trying to catch up on notes. But I get so lost when I try to make sense of the limit definition of the derivative. Will you please help me? </div></div> <div><div class="alert blue"> Of course, I can help you out! Do you know what the limit definition of the derivative is and is there a specific question I can help you with? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Yeah, the limit definition of the limit from what I understand is $f'(x)=lim_{h->0}(f(x+h)-f(x)))/(h)$. </div></div> <div><img class="left"/><div class="alert gray"> So, for the function $2x^2$-5, how would I use the definition to find the derivative? </div></div> <div><div class="alert blue"> Great question! To get the derivative the function has to be plugged in to the definition of the derivative. Like this: $f'(x)=lim_{x->h}(2(x+h)^(2) -2x^(2)-5)/(h)$ after distributing the terms and cancelling out terms we get: f(x)=lim_{h->0}(4xh+2h^(2))/(h) Then factor out the "h" from the numerator and cancel it out with the denominator. $f'(x)=lim_{h->0} 4x+2h$ Finally when you apply the limit, you are left with the derivative. f'(x)= 4x </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> oh, that makes a lot more sense now. But why does this matter? Could you explain what the function and derivative would stand for in terms of the real world? </div></div> <div><div class="alert blue"> Oh yes! The derivative is the rate of change of the function. So, for example let's say that the function $2x^2$-5 tells us the position of a moving car at a certain time. Can you guess what the derivative could tell us? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> How fast the car is moving? </div></div> <div><div class="alert blue"> Yes! Or the rate at which the car is moving from one position to another. The derivative we found, 4x, can tell us the rate in which the car is moving at a certain point in time. Not just in this case but for whichever situation the function stands for, the derivative will inform us the rate in which the function is changing. </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.