Math 181 Miniproject 3: Texting Lesson.md
---
Limit definition of the derivative
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
<div><img class="left"/><div class="alert gray">
Hey, I missed the last class and was trying to catch up on notes. But I get so lost when I try to make sense of the limit definition of the derivative. Will you please help me?
</div></div>
<div><div class="alert blue">
Of course, I can help you out! Do you know what the limit definition of the derivative is and is there a specific question I can help you with?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Yeah, the limit definition of the limit from what I understand is
$f'(x)=lim_{h->0}(f(x+h)-f(x)))/(h)$.
</div></div>
<div><img class="left"/><div class="alert gray">
So, for the function $2x^2$-5, how would I use the definition to find the derivative?
</div></div>
<div><div class="alert blue">
Great question! To get the derivative the function has to be plugged in to the definition of the derivative. Like this:
$f'(x)=lim_{x->h}(2(x+h)^(2)
-2x^(2)-5)/(h)$
after distributing the terms and cancelling out terms we get:
f(x)=lim_{h->0}(4xh+2h^(2))/(h)
Then factor out the "h" from the numerator and cancel it out with the denominator.
$f'(x)=lim_{h->0} 4x+2h$
Finally when you apply the limit, you are left with the derivative.
f'(x)= 4x
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
oh, that makes a lot more sense now. But why does this matter? Could you explain what the function and derivative would stand for in terms of the real world?
</div></div>
<div><div class="alert blue">
Oh yes! The derivative is the rate of change of the function.
So, for example let's say that the function $2x^2$-5 tells us the position of a moving car at a certain time. Can you guess what the derivative could tell us?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
How fast the car is moving?
</div></div>
<div><div class="alert blue">
Yes! Or the rate at which the car is moving from one position to another. The derivative we found, 4x, can tell us the rate in which the car is moving at a certain point in time. Not just in this case but for whichever situation the function stands for, the derivative will inform us the rate in which the function is changing.
</div><img class="right"/></div>
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.