# Parseval’s Identity ###### tags: `工程數學` ## Parseval's Identity $$\frac {1}{L} \int_{-L}^L{f^2(x)}dx=\frac{a_0^2}{2}+\sum_{n=1}^\infty{(a_n^2+b_n^2)}$$ ## Bessel's Inequality $$\frac {1}{L} \int_{-L}^L{f^2(x)}dx \geq \frac{a_0^2}{2}+\sum_{n=1}^M{(a_n^2+b_n^2)}$$ $$if\ M \rightarrow \infty,\\ Bessel's\ Identity\ becomes\ Parseval's\ Identity$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up