# Orbital Mechanics Formulas :::info \begin{align} G &= 6.67\times10^{-11}\\ m_E &= 5.98\times10^{24}(kg) \end{align} ::: $(3.58)$ $$h=rv_\theta=r^2 \dot \theta$$ $(3.59)$ $$Area = \frac{(r\Delta \theta)(r)}{2}\\ \frac{dArea}{dt}=\frac{1}{2}(r^2 \dot \theta)$$ $(3.70)$ $$p(\theta)=\frac{1}{r(\theta)}=\frac{Gm_s}{h^2}+A\;cos\theta$$$where\ A\ is\ a\ constant$ $(3.71)$ $$ e = \frac{r}{d}=\frac{r}{C-r\;cos\theta}\\ \frac{1}{r}=\frac{1}{e\,C}+\frac{1}{C}\;cos\theta$$$Compare\ with\ 3.70$ $$\Rightarrow e=\frac{Ah^2}{Gm_s}$$ $(3.73)$ $$\frac{1}{r}=\frac{Gm_s}{h^2}+A\;cos\theta$$$differentiate$ \begin{align} \dot r=A\,r^2\,\dot\theta sin\theta\\ \Rightarrow v_r=A\,r\,v_\theta \, sin\theta \end{align} $(3.76)$ $$ A= \frac{v_r}{r\;v_\theta\;sin \theta} $$$Plug\ in\ (3.73)$ $$ \frac{1}{r}-\frac{Gm_s}{h^2}=\frac{v_r}{r\;v_\theta\;sin \theta}\;cos\theta$$\begin{align} tan\theta &=\frac{v_r}{r\;v_\theta\;(\frac{1}{r}-\frac{Gm_s}{h^2})}\\ &=\frac{v_r}{v_\theta-\frac{Gm_s}{h}} \end{align} $(3.79)$ $$ \frac{1}{r_p}=\frac{Gm_s}{h^2}+A\\ \frac{1}{r_a}=\frac{Gm_s}{h^2}-A\\ \Rightarrow A=\frac{1}{2}(\frac{1}{r_p}-\frac{1}{r_a}) $$ $(3.83)$ \begin{cases} \dfrac{1}{r_p}=\dfrac{Gm_s}{h^2}+A\\ e=\dfrac{Ah^2}{Gm_s} \end{cases}\begin{gather} \frac{1}{r_p}=A\;(\frac{1+e}{e})\\ A = \frac{e}{r_p(1+e)}\\ \Rightarrow h=\sqrt{Gm_s r_p(1+e)}=r_p^2 \; \dot \theta \end{gather}\begin{align} v_p&=r_p \dot \theta = \frac{h}{r_p}\\ &=\left[\frac{Gm_s(1+e)}{r_p}\right]^{\frac{1}{2}} \end{align} $(3.85)$ \begin{cases} \dfrac{1}{r_p}=A\;(\dfrac{1+e}{e})=\dfrac{Gm_s}{h^2}(1+e)\\ \dfrac{1}{r_a}=A\;(\dfrac{1-e}{e})=\dfrac{Gm_s}{h^2}(1-e) \end{cases}