# 2022 / 12 / 28 進度 ###### tags: `實驗` [TOC] ## 實驗結果 valid都是第6個fold <font size=5, color='blue'>一張圖片</font> | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | |單純一張圖片|0.2153||| |一張圖片+放大bbox|0.3565||| |一張圖片+放大bbox+Deformable|0.3585||| |一張圖片+放大bbox+DIoU Deformable|0.3614||| <font size=5, color='blue'>加上另一張圖片(Special)</font> | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | |Baseline兩張原圖直接0.5+0.5|0.2627|0.3564|0.3867| |兩張原圖直接0.8+0.2|0.4087|0.4769|0.4530| |整張圖registration|<b>0.4514|<b>0.5151|0.4885| |一半一半registration|0.4363|0.4955|<b>0.5045| <font size=5, color='blue'>參考時間資訊(Temporal)</font> | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | | Baseline LSTM 1/log(e+天數) |0.4038|0.4993| 0.4529| | 1/t沒有間隔限制(左右都registration) |<b>0.4582|0.5101|0.4606| | e沒有間隔限制(左右都registration) |0.4439|<b>0.5286|<b>0.5286| <font size=5, color='blue'>只參考特定時間內的資訊(Time constrant)</font> | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | |Baseline LSTM 1/log(e+天數)|0.4038|<b>0.4993|0.4529| |天數>=200不考慮|<b>0.4262|0.4849|<b>0.4852| |天數>=300不考慮|0.4257|0.4639|0.4564| |天數>=365不考慮|0.3764|0.4433|0.4630| |天數>=400不考慮|0.3904|0.4337|0.4798| =============================================== <font size=5, color='blue'>AI自己學兩張圖片的比重(Attention)</font> | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |half|0.4991|0.4320|0.3053|0.5858|0.4048|0.2095| |whole|0.5270|0.4900|0.3956|0.5823|0.4920|0.2269| | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | |Attention whole|<b>0.4887|<b>0.5305|<b>0.5108| |Attention half|0.4285|0.4932|0.4821| |Attention whole with time|||| Attention whole Patch No attention : 0.4729 Patch attention 8:2 : 0.4576 發現使用Pseudo label使performance變好 但是參考上一張圖片的情況消失了(1/0) 之前0.488的那個是(0.95:0.05) 3.Pseudo label (att weight : 1/0) | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |best|0.5349|0.5009|0.4154|0.5238|0.5635|0.1976| [0.4399432715312221, 0.5320373957854486, 0.6326539170600971] | Name | mAP50 | mAP30 | mAR50:95 | | -------- | -------- | -------- | -------- | |best Pseudo label|0.5009|0.5349|0.5075| |Lastest Pseudo label|0.4926|0.5373|0.5044| * 嘗試用<b>DeformFPN</b> + Attention + Residual Whole (att weight : 1/1e-20) | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |best |0.5910|0.5312|0.4659|0.5976|0.5301|0.0.2773| mAP 0.30:0.95 = 0.362 [0.5164648309276482, 0.5976064066156258, 0.6586510863301804] * 嘗試用<b>DeformAtt</b> + Attention + Residual <b>Whole</b> (att weight : 1/1e-13) | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |best |0.5547|0.5134|0.4074|0.6208|0.5121|0.2683| [0.4411639431210541, 0.6284983532771768, 0.5943222475821961] * 嘗試用<b>DeformFPN</b> + Attention + Residual <b>Patch</b> (att weight : 1/1e-25) | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |best |0.6030|0.5528|0.5621|0.5413|0.5550*|0.1961| Dual Flow Module | Name | mAP30 | mAP50 | Benign | Equivocal | Malignant| mAP75 | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |best |0.5427|0.4685|0.3159|0.5413|0.5620|0.2213| [0.40640543675439, 0.5706984574186, 0.6509455636143] 1.然後要嘗試一下兩張圖片的augmentation (1+2/1+1/2+2/2+1) 4.可能切patch的時候就已經有誤差了 導致registration對的不好,可能要先做registration,不過這樣等於要存每張圖片以及上一張做registration的圖 2.Unsupervised data label whole registration 改回來看看 |half regis|0.4991|0.4320|0.3053|0.5858|0.4048|0.2095| |whole regis|0.5270|0.4900|0.3956|0.5823|0.4920|0.2269|