# Note of PAM/PSK/QAM View the book with "<i class="fa fa-book fa-fw"></i> Book Mode". Multi-Dimensional Signal --- - PAM: one-dimensional - PSK: two-dimensional - QAM: two-dimensional - How to create three or higher dimensional signals? - Subdivision of Time Example: $N$ time slots can form $2N$ vector basis elements (each slot has two $I/Q$ bearers.) - Subdivision of Frequency Example: $N$ frequency bands can form $2N$ vector basis elements (each band has two $I/Q$ bearers.) - Subdivision of both Time and Frequency Digital PAM === ## Signaling $$s_{m}(t)=\Re\{A_{m}g(t)e^{2\pi f_{c}t}\}=A_{m}g(t)\cos(2\pi f_{c}t),\ t\in[0,T) $$ where $A_{m}=(2m-1-M)d$ and $m=1,\ldots,M$ ## Basis $$\begin{aligned} \phi_{1}(t)&=\frac{g(t)\cos(2\pi f_{c}t)}{\left \Vert g(t)\right \Vert\left \Vert\cos(2\pi f_{c}t)\right \Vert}\\ &=\frac{g(t)}{\left \Vert g(t)\right \Vert}\sqrt{2}\cos(2\pi f_{c}t)=\frac{g(t)}{\sqrt{\mathcal{E}_{g}}}\sqrt{2}\cos(2\pi f_{c}t)\\ \end{aligned}$$ $$s_{m}=\left[A_{m}\frac{\sqrt{\mathcal{E}_{g}}}{\sqrt{2}}\right]=\left[A_{m}\frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}\right] $$ ## Energy ### Transmission energy of M-PAM Signals $$\mathcal{E}_{m}=\int^{Ts}_{0}\left\lvert s_{m}(t) \right\rvert^{2}dt\approx \frac{A_{m}^{2}\left\Vert g(t)\right\Vert^{2}}{2}=\frac{1}{2}A_{m}^{2}\mathcal{E}_{g} $$ ### Average Signal Energy $$\begin{aligned}\mathcal{E}_{avg}=E[\mathcal{E}_{m}]&\approx\frac{1}{M}\sum^{M}_{m=1}\frac{1}{2}A_{m}^{2}\mathcal{E}_{g}\\ &=\frac{\mathcal{E}_{g}}{2M}\sum^{M}_{m=1}A_{m}^{2}\\ &=\frac{2\mathcal{E}_{g}}{2M}\sum^{M/2}_{m=1}(2m-1)^{2}\\ &=\frac{\mathcal{E}_{g}}{M}\times \frac{M(M^{2}-1)}{6}\\ &=\frac{(M^{2}-1)}{6}\mathcal{E}_{g}\\ \end{aligned} $$ ### Average Bit Energy $$\begin{aligned}\mathcal{E}_{bavg}=\frac{\mathcal{E}_{avg}}{\log_{2}M}=\frac{M^{2}-1}{6\log_{2}M}\mathcal{E}_{g}\ \ \ \left(\mathcal{E}_{g}=\frac{6\log_{2}M}{M^{2}-1}\mathcal{E}_{bavg}\right) \end{aligned} $$ ## Distance ### Euclidean Distance $$\begin{aligned} d_{mn}&=\left\Vert s_{m}(t)-s_{n}(t) \right\Vert\\ &\approx\sqrt{\left\Vert s_{m}-s_{n} \right\Vert^{2}}\\ &=\sqrt{\left\Vert \sqrt{\frac{\mathcal{E}_{g}}{2}(A_{m}-A_{n})}\right\Vert^{2}}\\ &=\sqrt{\frac{\mathcal{E}_{g}}{2}}\left\lvert A_{m}-A_{n}\right\rvert \end{aligned} $$ ### Minimun Euclidean Distance (d=1) $$\begin{aligned} d_{min}&=\sqrt{\frac{\mathcal{E}_{g}}{2}}\left\lvert A_{m}-A_{n}\right\rvert\\ &=\sqrt{\frac{\mathcal{E}_{g}}{2}}\times 2\\ &=\sqrt{2\mathcal{E}_{g}}&\left(\mathcal{E}_{g}=2d_{min}^{2}\right) \\ &=\sqrt{\frac{12\log_{2}M}{M^{2}-1}\mathcal{E}_{bavg}}&\left(\mathcal{E}_{bavg}=\frac{M^{2}-1}{12\log_{2}M}d_{min}^{2}\right) \end{aligned} $$ ## Error Probability Consider the M-ary PAM $$\mathcal{S}=\left\{\pm\frac{1}{2} d_{min},\pm\frac{3}{2} d_{min},\cdots,\pm\frac{M-1}{2} d_{min}\right\}$$ There are two types of error events: assuming $n$ is zero-mean Gaussian random variable with variance $\frac{N_{0}}{2}$ - Inner Points with error probability $P_{ei}$ : $$\begin{aligned}P_{ei} &= Pr\left\{\left\lvert n \right\rvert > \frac{d_{min}}{2} \right\}\\ &=2Q\left(\frac{\frac{d_{min}}{2}-0}{\sqrt{\frac{N_{0}}{2}}}\right) &\left(\textrm{By $n$ is zero-mean and variance $\frac{N_{0}}{2}$}\right)\\ &=2Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right) \end{aligned}$$ - Outer Points with error probability $P_{eo}$ : only one end causes errors: $$\begin{aligned}P_{ei} &= Pr\left\{ n > \frac{d_{min}}{2} \right\}\\ &=Q\left(\frac{\frac{d_{min}}{2}-0}{\sqrt{\frac{N_{0}}{2}}}\right) &\left(\textrm{By $n$ is zero-mean and variance $\frac{N_{0}}{2}$}\right)\\ &=Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right) \end{aligned} $$ ### Symbol Error Probability $$\begin{aligned}P_{e} &= \frac{1}{M}\sum^{M}_{m=1}Pr\left\{ error\ |\ m\ sent \right\}\\ &= \frac{1}{M}\left[ 2\left ( M-2 \right)Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)+ 2Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)\right]\\ &= \frac{2(M-1)}{M}Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)\\ &= \frac{2(M-1)}{M}Q\left(\sqrt{\frac{6\log_{2}M}{M^{2}-1}\frac{\mathcal{E}_{bavg}}{N_{0}}}\right) \end{aligned} $$ ## Efficiency $$\begin{aligned}P_{e} = \frac{2(M-1)}{M}Q\left(\sqrt{\frac{6\log_{2}M}{M^{2}-1}\frac{\mathcal{E}_{bavg}}{N_{0}}}\right) \end{aligned} $$ For large $k=\log_{2}M$ - To increase $k$ by 1 bit, we need to double $M$ - To keep the same $P_{e}$ we need $\mathcal{E}_{bavg}$ to roughly quadruple - Increase $k$ by 1 bit $\implies$ increase $\mathcal{E}_{b}$ by roughly $6$ dB PSK === ## Signaling $$\begin{aligned}s_{m}(t)&=\Re\{g(t)e^{2\pi f_{c}t}e^{\theta_{m}}\}=g(t)\cos(2\pi f_{c}t+\theta_{m})\\ &= g(t)\cos(\theta_{m})\cos(2\pi f_{c}t)-g(t)\sin(\theta_{m})\sin(2\pi f_{c}t),\ t\in[0,T) \end{aligned} $$ where $\theta_{m}=\frac{2\pi m}{M}$ and $m=0,\ldots,M-1$ ## Basis $$\begin{aligned} \phi_{1}(t)&=\frac{g(t)\cos(2\pi f_{c}t)}{\left \Vert g(t)\right \Vert\left \Vert\cos(2\pi f_{c}t)\right \Vert}=\frac{g(t)}{\left \Vert g(t)\right \Vert}\sqrt{2}\cos(2\pi f_{c}t) \end{aligned} $$ $$\begin{aligned} \phi_{2}(t)&=-\frac{g(t)\sin(2\pi f_{c}t)}{\left \Vert g(t)\right \Vert\left \Vert\sin(2\pi f_{c}t)\right \Vert}=-\frac{g(t)}{\left \Vert g(t)\right \Vert}\sqrt{2}\sin(2\pi f_{c}t) \end{aligned} $$ $$s_{m}=\left[\frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}\cos(\theta_{m}),\frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}\sin(\theta_{m}) \right] = \frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}\left[\cos(\theta_{m}),\sin(\theta_{m}) \right] $$ ## Energy ### Transmission energy of M-PAM Signals $$\mathcal{E}_{m}=\int^{Ts}_{0}\left\lvert s_{m}(t) \right\rvert^{2}dt\approx \frac{\left\Vert g(t)\right\Vert^{2}}{2}\left[\cos^{2}(\theta_{m})+\sin^{2}(\theta_{m})\right]=\frac{\mathcal{E}_{g}}{2} $$ Advantage: equal energy for every channel symbol. ### Bit Energy $$\begin{aligned}\mathcal{E}_{b}=\frac{\mathcal{E}_{m}}{\log_{2}M}=\frac{\mathcal{E}_{g}}{2\log_{2}M}\ \ \ \left(\mathcal{E}_{g}=2\mathcal{E}_{b}\log_{2}M\right) \end{aligned} $$ ## Distance ### Euclidean Distance $$\begin{aligned} d_{mn}&=\left\Vert s_{m}(t)-s_{n}(t) \right\Vert\\ &\approx\sqrt{\left\Vert s_{m}-s_{n} \right\Vert^{2}}\\ &=\frac{\left\Vert g(t) \right\Vert}{\sqrt{2}}\sqrt{\left\lvert \cos(\theta_{m})-\cos(\theta_{n})\right\rvert^{2}+\left\lvert \sin(\theta_{m})-\sin(\theta_{n}) \right\rvert^{2}}\\ &= \left\Vert g(t) \right\Vert\sqrt{1-\cos(\theta_{m}-\theta_{n})}\\ &= \sqrt{\mathcal{E}_{g}\left[1-\cos\left(\frac{2\pi}{M}(m-n)\right)\right]} \end{aligned} $$ ### Minimun Euclidean Distance (d=1) $$\begin{aligned} d_{min}&=\sqrt{\mathcal{E}_{g}\left[1-\cos\left(\frac{2\pi}{M}\right)\right]}\\ &=\sqrt{2\mathcal{E}_{g}\sin^{2}\frac{\pi}{M}} &\left(\textrm{By }\sin\theta=\frac{1-\cos2\theta}{2}\right)\\ &=2\sqrt{\left(\log_{2}M\times\sin^{2}\frac{\pi}{M}\right)\mathcal{E}_{b}}&\left(\textrm{By } \mathcal{E}_{g}=2\mathcal{E}_{b}\log_{2}M\right)\\ &\approx 2\sqrt{\frac{\pi^{2}\log_{2}M}{M^{2}}\mathcal{E}_{b}}&\left(\textrm{By large } M,\textrm{ we have }\sin\frac{\pi}{M}\approx\frac{\pi}{M}\right) \end{aligned} $$ ## Error Probability Signal constellation for $M$-ary PSK is $$ \mathcal{S}=\left\{s_{m}=\sqrt{E}\left(\cos\left(\frac{2\pi m}{M}\right),\sin\left(\frac{2\pi m}{M}\right) \right): m=0,1,\cdots,M-1\right\} $$ - By symmetry we can assume $s_{0}=(\sqrt{\mathcal{E}},0)$ ($\mathcal{E}=\mathcal{E}_{g}$) was transmitted. - The received signal vector $r$ is $$ r= \left(\sqrt{\mathcal{E}}+n_{1},n_{2}\right) $$ - $\mathcal{E}_{b}=\frac{\mathcal{E}}{\log_{2}M}$ ### Symbol Error Probability - When $M=2$, binary PSK is antipodal: $$ P_{e}=Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right) $$ - When $M=4$, it is QPSK: $$ P_{e}=1-\left[1-Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right)\right]^{2} $$ - For large $M$ we can approximate $P_{e}$ as $$ P_{e}\approx 2Q\left(\sqrt{\frac{2\pi^{2}\log_{2}M}{M^{2}}\frac{\mathcal{E}_{b}}{N_{0}}}\right) $$ ## Efficiency For large $M$ we can approximate $P_{e}$ as $$ P_{e}\approx 2Q\left(\sqrt{\frac{2\pi^{2}\log_{2}M}{M^{2}}\frac{\mathcal{E}_{b}}{N_{0}}}\right) $$ - To increase $k$ by 1 bit, we need to double $M$ - To keep the same $P_{e}$ we need $\mathcal{E}_{b}$ to roughly quadruple - Increase $k$ by 1 bit $\implies$ increase $\mathcal{E}_{b}$ by roughly $6$ dB QAM === ## Signaling $$ s_{m}(t)=A_{m,i}g(t)\cos(2\pi f_{c}t)-A_{m,q}g(t)\sin(2\pi f_{c}t) $$ where $A_{m,i},A_{m,q}\in\left\{\left(2a-1-\sqrt{M}\right):a=1,2,\ldots,\sqrt{M}\right\}$ ## Basis $$\begin{aligned} \phi_{1}(t)&=\frac{g(t)\cos(2\pi f_{c}t)}{\left \Vert g(t)\right \Vert\left \Vert\cos(2\pi f_{c}t)\right \Vert}=\frac{g(t)}{\left \Vert g(t)\right \Vert}\sqrt{2}\cos(2\pi f_{c}t) \end{aligned} $$ $$\begin{aligned} \phi_{2}(t)&=-\frac{g(t)\sin(2\pi f_{c}t)}{\left \Vert g(t)\right \Vert\left \Vert\sin(2\pi f_{c}t)\right \Vert}=-\frac{g(t)}{\left \Vert g(t)\right \Vert}\sqrt{2}\sin(2\pi f_{c}t) \end{aligned} $$ $$s_{m}=\left[\frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}A_{m,i},\frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}A_{m,q} \right] = \frac{\left \Vert g(t)\right \Vert}{\sqrt{2}}\left[A_{m,i},A_{m,q} \right] $$ ## Energy ### Transmission energy of M-PAM Signals $$\mathcal{E}_{m}=\int^{Ts}_{0}\left\lvert s_{m}(t) \right\rvert^{2}dt\approx \frac{\left\Vert g(t)\right\Vert^{2}}{2}\left(A_{m,i}^{2},A_{m,q}^{2}\right) $$ ### Average symbol energy $$ \begin{aligned} \mathcal{E}_{avg}&=\frac{1}{M}\frac{\mathcal{E}_{g}}{2}\sum^{\sqrt{M}}_{m=1}\sum^{\sqrt{M}}_{n=1}\left(A_{m,i}^{2}+A_{n,q}^{2}\right)\\ &=\frac{\mathcal{E}_{g}}{2M}\times \frac{2M(M-1)}{3}\\ &=\frac{M-1}{3}\mathcal{E}_{g} \end{aligned} $$ ### Average bit energy $$\begin{aligned}\mathcal{E}_{bavg}=\frac{\mathcal{E}_{avg}}{\log_{2}M}=\frac{M-1}{3\log_{2}M}\mathcal{E}_{g}\ \ \ \left(\mathcal{E}_{g}=\frac{3\log_{2}M}{M-1}\mathcal{E}_{b}\right) \end{aligned} $$ ## Distance ### Euclidean Distance $$\begin{aligned} d_{mn}&=\left\Vert s_{m}(t)-s_{n}(t) \right\Vert\\ &\approx\sqrt{\left\Vert s_{m}-s_{n} \right\Vert^{2}}\\ &=\frac{\left\Vert g(t) \right\Vert}{\sqrt{2}}\sqrt{\left\lvert A_{m,i}-A_{n,i}\right\rvert^{2}+\left\lvert A_{m,q}-A_{n,q} \right\rvert^{2}}\\ \end{aligned} $$ ### Minimun Euclidean Distance (d=1) $$\begin{aligned} d_{min}&=\min\left\Vert s_{m}(t)-s_{n}(t) \right\Vert\\ &\approx \frac{\left\Vert g(t) \right\Vert}{\sqrt{2}}\sqrt{\left\lvert 2\right\rvert^{2}+\left\lvert 2 \right\rvert^{2}}\\ &=\sqrt{2\mathcal{E}_{g}} &\left(\mathcal{E}_{g}=2d_{min}^{2}\right) \\ &=\sqrt{\frac{6\log_{2}M}{M-1}\mathcal{E}_{bavg}} &\left(\mathcal{E}_{bavg}=\frac{M-1}{6\log_{2}M}d_{min}^{2}\right) \end{aligned} $$ ## Error Probability - $M$ is usually a square number - $M$-ary QAM is composed of two independent $\sqrt{M}$-ary PAM $$ \begin{aligned} &\mathcal{S}_{PAM}=\left\{\pm\frac{1}{2}d_{min},\pm\frac{3}{2}d_{min},\cdots,\pm\frac{\sqrt{M}-1}{2}d_{min}\right\}\\ &\mathcal{S}_{QAM}=\left\{\left(x,y\right):x,y\in\mathcal{S}_{PAM}\right\} \end{aligned} $$ $$ \mathcal{S}_{M-QAM}=\mathcal{S}_{\sqrt{M}-PAM}\times \mathcal{S}_{\sqrt{M}-PAM} $$ ### Symbol Error Probability $$ P_{e,\sqrt{M}-{PAM}}=2\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right) $$ $$ \begin{aligned} P_{e,M-{QAM}}&=1-\left(1-P_{e,\sqrt{M}-PAM}\right)^{2}\\ &= 2P_{e,\sqrt{M}-PAM}\left(1-\frac{1}{2}P_{e,\sqrt{M}-PAM}\right)\\ &= 4\left(1-\frac{1}{N}\right)Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)\times\left(1-\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)\right)\\ &\leq 4Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)=4Q\left(\sqrt{\frac{3\log_{2}M}{M-1}\frac{\mathcal{E}_{bavg}}{N_{0}}}\right) \end{aligned} $$ ## Efficiency $$ \begin{aligned} P_{e,M-{QAM}}\approx 4Q\left(\sqrt{\frac{3\log_{2}M}{M-1}\frac{\mathcal{E}_{bavg}}{N_{0}}}\right) \end{aligned} $$ - To increase $k=\log_{2}M$ by 1 bit, we need to double $M$ - To keep the same $P_{e}$ we need to double $\mathcal{E}_{bavg}$ - Increase $k$ by 1 bit $\implies$ increase $\mathcal{E}_{b}$ by roughly $3$ dB - QAM is more power efficient than PAM and PSK. ###### tags: `Digital Communication` `Book`