For the general docs, check out the [crafted document](https://hackmd.io/@okdimok/SkMl28kwn).
For your specific case I would craft the cmd and try commenting the process. First, I assume the zip is similar to the github repo https://github.com/rmihaylov/falcontune.
That repo requires Pytorch, so we can use the latest NGC Pytorch container. See [this part of the doc](https://hackmd.io/_gNV67kuRoGE9XCNXh0dmw#Pyxis--ENROOT-%E2%80%94-import-the-container-to-speed-up-the-start) on how to import it.
My recommendation will be to prepare the specific image for falcon. Check out the [how to add new packages to image](https://hackmd.io/_gNV67kuRoGE9XCNXh0dmw#ENROOT-%E2%80%94-how-to-add-new-packages-to-image). You can use similar procedure to install the python requirements directly to the image and export it.
In your case you will need to replace
```bash!
apt install rolldice
```
with
```bash!
pip install -r requirements.txt
```
Note you may need --mount option of `enroot start` [docs](https://github.com/NVIDIA/enroot/blob/master/doc/cmd/start.md)
After having this installed, you just need to launch the SLURM job within the container.
```bash!
srun -N 1 `#one node` \
--gres=gpu:8 `#8 GPUs per node` \
--container-image ~/nvidia+pytorch+23.07-py3.sqsh `# <- change to the one you get after installation of additonal packages` \
--container-mount-home \
bash -c "falcontune finetune \
--model=falcon-40b-instruct \
--weights=/home/yma/falcon-40b-instructt \
--dataset=/home/yma/qa_pairs.json \
--data_type=alpaca \
--lora_out_dir=/home/yma/models_weight/falcon-40b-instruct-alpaca \
--mbatch_size=1 \
--batch_size=2 \
--epochs=300 \
--lr=3e-4 \
--cutoff_len=512 \
--lora_r=16 \
--lora_alpha=16 \
--lora_dropout=0.05 \
--warmup_steps=5 \
--save_steps=50 \
--save_total_limit=3 \
--logging_steps=5 \
--target_modules='[\"query_key_value\"]'
"
```