Math 181 Miniproject 3: Texting Lesson.md --- Differentiable! You're continuously killing me! === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #FFF; background-color: #F08080; border-color: #F08080; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #000; border-color: #48D1CC; background-color: #48D1CC; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey, you look a little confused... do you need help on a problem? </div></div> <div><div class="alert blue"> YES! Please! I can't seem to get the concepts of a function being differentiable and a function being continuous straight! The more I read, the more lost I get! :( </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> No worries. Let me first explain what a differentiable function entails and what a continuous function is. A function is **DIFFERENTIABLE** so long as there is an existing derivative for each point comprised within that function's domain. In order for a function to be **CONTINUOUS**, it must adhere to the three following conditions: *1. f is defined at a.* *2. f has a limit as x approaches a.* 3.$\lim\limits_{x\to a}$ f(x) = f(a) This ultimately results in a function that, within its domain, when sketched, it is done in one continuous motion. The correlation between these two concepts is when a function is continuously differentiable, occurring when f is differentiable and its derivative is continuous. </div></div> </div></div> <div><div class="alert blue"> Can you give me an example of each one on a graph? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Sure! So here we have an example of a graph of a function that is continuous: ![](https://i.imgur.com/FaL7Fhz.png) And here is a graph of a function that is differentiable: ![](https://i.imgur.com/xbqVco4.png) </div></div> <div><div class="alert blue"> What would be an example of a continuously differentiable function when graphed? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> A continuously differentiable function would look like this: ![](https://i.imgur.com/5GkVqJu.png) </div></div> <div><div class="alert blue"> Oh I see! Thanks for for the help! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.