# Chapter 16. Information Cascades [TOC] ## 16.1 Following the Crowd ### Herding/Information Cascadess - individuals - private information - decision - decide in an order - the decision may be influenced by former decision - it is not 羊群效應 - 理性地根據先前的選擇判斷自己選擇的效益 - it is not Direct-Benefit Effects - 是否購買傳真機,使用人數直接影響該選擇效益 ## 16.2 A Simple Herding Experiment - some students, $s_1,\ldots,s_n$ - an urn - A: 50% 2 red, 1 blue - B: 50% 1 red, 2 blue - then $P(\mbox{red})=P(\mbox{blue})=\frac{1}{2}$ - one-by-one - draw a ball and put it back - all others don't know - say the color of them $c_1,\ldots,c_n$ - guess A or B - let all later students know - say the guess of color $g_1,\ldots,g_n$ ## Remark - first student $s_1$ - $g_1:=c_1$ - second student $s_2$ - if $g_1=c_2$ - $g_2:=c_2$ - else - the same case as draw twice, get one red and one blue - guess arbitrarily - assume he guess the color he draw $g_2=c_2$ - third student $s_3$ - if $g_1\neq g_2$ or $g_1=g_2=c_3$ - $g_3:=c_3$ - if $g_1=g_2\neq c_3$ - the same case as draw three times. get one $c_3$ and two $g_1$ - $g_3:=g_1$ - fourth student $s_4$ and after - skip some situation - if $g_1=g_2=g_3$ - $g_3=g_1$ no matter what he draw - no information from $s_3$ - the same situation as $s_3$ - $g_4:=g_1$ - $P(\mbox{error})=P(1r2b)p(c_1=c_2=r\mid 1r2b)+P(2r1b)P(c_1=c_2=b\mid 2r1b)=\frac{1}{9}$ ## 16.3 Bayes' Rule: A Model of Decision Making under Uncertainty - [貝氏機率](https://zh.wikipedia.org/wiki/%E8%B2%9D%E6%B0%8F%E6%A9%9F%E7%8E%87) $$ P(A\mid B)=\frac{P(A)\times P(B\mid A)}{P(B)} $$ ## 16.4 Bayes's Rule in the Herding Experiment Compute $P(2b1r\mid b,b,r)$ $$ P(b,b,r)=P(2r1b)\times P(b,b,r\mid 2r1b)+P(1r2b)\times P(b,b,r\mid 1r2b)=\frac{1}{9} $$ $$ P(b,b,r\mid 1r2b)=\frac{2}{3}\cdot\frac{2}{3}\cdot\frac{1}{3}=\frac{4}{27} $$ $$ P(2b1r\mid b,b,r)=\frac{P(2b1r)\times P(b,b,r\mid 1r2b)}{P(b,b,r)}=\frac{\frac{1}{2}\cdot\frac{4}{27}}{\frac{1}{9}}=\frac{2}{3}>\frac{1}{2} $$ ## 16.5 A Simple, General Cascade Model ### Formulating the Model - A group of people (numbered $1, 2, 3, . . .$) who will sequentially make decisions - States of the World - $G$: option is a good idea - $B$: option is a bad idea - $Pr [G] = p$, $Pr [B] = 1-p$ - Payoffs - If the individual chooses rejecting - payoff $=0$ - If the individual chooses accepting - If the option is a good idea - payoff $=v_g > 0$ - If the option is a bad idea - payoff $=v_b <0$ - Assume that the expected payoff from accepting in the absence of other information $=v_gp + v_b(1 − p) = 0$ - Signals - high signal $H$ - low signal $L$ ![](https://i.imgur.com/ukVPcsq.png) - $q\gt \frac12$ ### Individual Decisions - Suppose that a person gets a high signal. - expected payoff = $v_gPr [G | H] + v_bPr [B | H]$ - $Pr [G | H] = \frac{Pr [G] × Pr [H | G]}{Pr [H]}= \frac{Pr [G] ×Pr [H | G]}{ Pr [G] × Pr [H | G] + Pr [B] × Pr [H | B]}= \frac{pq}{pq+(1 −p)(1 − q)}> p$ ### Multiple Signals - Reason about an individual’s decision when they get a sequence $S$ consisting of $a$ high signals and $b$ low signals - If $a>b$, $Pr [G | S] > Pr [G]$ (individuals should accept the option) - If $a<b$, $Pr [G | S] < Pr [G]$ (individuals should reject the option) - If $a=b$, $Pr [G | S] = Pr [G]$ - $Pr [G | S] = \frac{Pr [G] × Pr [S | G]}{Pr [S]}=\frac{Pr [G] × Pr [S | G]}{Pr [G] × Pr [S | G] + Pr [B] × Pr [S | B]}$$=\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)(1 − q)^aq^b}$ - If $a>b$, $Pr [G | S]=\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)(1 − q)^aq^b}$ $>\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)q^a(1-q)^b}$ $= \frac{pq^a(1 − q)^b}{q^a(1-q)^b}=p=Pr [G]$ - If $a<b$, $Pr [G | S]=\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)(1 − q)^aq^b}$ $<\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)q^a(1-q)^b}$ $=Pr [G]$ - If $a=b$, $Pr [G | S]=\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)(1 − q)^aq^b}$ $=\frac{pq^a(1 − q)^b}{pq^a(1 − q)^b + (1 − p)q^a(1-q)^b}$ $=Pr [G]$ ## 16.6 Sequential Decision Making and Cascades - Suppose that person $N$ knows that everyone before her has followed their own signal. - If #acc before $N$ $=$ #rej before $N$, $N$ will follow her own signal. - If $|$#acc before $N$ $-$ #rej before $N|=1$, $N$ will follow her private signal. - $N$’s private signal will make her indifferent (diff=0) - It will reinforce the majority signal (diff=2) - If diff $\ge2$, $N$ will follow the earlier majority. ($N + 1$, $N + 2$, ... know that $N$ ignored her own signal, a cascade has begun) ![](https://i.imgur.com/8wEB0O6.png) - Argue that the probability of finding three matching signals in a row converges to 1 as $N\rightarrow \infty$. - Divide N people into blocks of 3 consecutive people each. - The probability that none of these blocks consists of identical signals is $(1 − q^3 − (1 − q)^3)^{N/3} \rightarrow 0$ as $N\rightarrow \infty$ ## 16.7 Lessons from Cascades - some observations - Cascades can be wrong. - Cascades can be based on very little information. - Cascades are fragile