# Meeting 3/5
###### tags: `meeting note`
```graphviz
digraph Emodel {
node [shape=box] S, F, I_pre, I_asym, I_sym, V1, V2, R, E, D
S -> V1
S -> E [label="Infected"]
V1 -> E
V1 -> V2
V2 -> E
E -> I_pre
I_pre -> I_asym
I_pre -> I_sym
I_asym -> R
I_asym -> F
I_sym -> D
I_sym -> R
I_sym -> F
F -> E
{rank = "same"; S; V1; V2}
{rank = "same"; R; F; D}
rankdir = "LR"
}
```
- make the initialization model more general
- $I$ can be presymptomatic, symptomatic, asymptomatic
- Vaccination first dose $V_1$ and second dose $V_2$
- vaccination efficency wanning
## Optimization
- data $D=\{(x_i,y_i)\}$ where
- $x$ is multi-dimension vaccination strategy
- $y\in\mathbb R$ be our objective
- infection, death, YLL, e.t.c.
- randomize choose a number of $x_i$, sovle their corresponding $y_i$ by our network simulation
- by linear regression, model $D$ as
$$
Y=
\begin{pmatrix}
y_1\\y_2\\\vdots
\end{pmatrix}=X\beta +\epsilon
$$
- adding some constraints, to be a linear program
- solve by linear program solver
- sovle by some optimization algorithm