# Meeting 3/5 ###### tags: `meeting note` ```graphviz digraph Emodel { node [shape=box] S, F, I_pre, I_asym, I_sym, V1, V2, R, E, D S -> V1 S -> E [label="Infected"] V1 -> E V1 -> V2 V2 -> E E -> I_pre I_pre -> I_asym I_pre -> I_sym I_asym -> R I_asym -> F I_sym -> D I_sym -> R I_sym -> F F -> E {rank = "same"; S; V1; V2} {rank = "same"; R; F; D} rankdir = "LR" } ``` - make the initialization model more general - $I$ can be presymptomatic, symptomatic, asymptomatic - Vaccination first dose $V_1$ and second dose $V_2$ - vaccination efficency wanning ## Optimization - data $D=\{(x_i,y_i)\}$ where - $x$ is multi-dimension vaccination strategy - $y\in\mathbb R$ be our objective - infection, death, YLL, e.t.c. - randomize choose a number of $x_i$, sovle their corresponding $y_i$ by our network simulation - by linear regression, model $D$ as $$ Y= \begin{pmatrix} y_1\\y_2\\\vdots \end{pmatrix}=X\beta +\epsilon $$ - adding some constraints, to be a linear program - solve by linear program solver - sovle by some optimization algorithm