# Proposal討論 ## 3/30 ### Problem: * keyword: traffic * description:以駕駛人的角度,當遇到不同號誌時應該要做出怎麼樣的反應 * goal: 分辨出交通號誌代表的意義 * input data: 交通號誌圖 * output data: 交通號誌代表的意義 (減速..) * challenge: 各國的交通號誌不太相同,圖片解讀的困難 * approach: * evaluation metrics: ~~accuracy > 0.7~~ * baseline: #### NOT YET DONE * approach、baseline、evaluation metrics、dataset、related work ## 4/5 * input * https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign * https://www.kaggle.com/datasets/shanmukh05/traffic-sign-cropped * https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-preprocessed * https://www.kaggle.com/datasets/dmitryyemelyanov/chinese-traffic-signs * related work: * https://www.kaggle.com/code/valentynsichkar/traffic-signs-classification-with-cnn * https://medium.com/@bob800530/self-driving-car-project-3-%E4%BA%A4%E9%80%9A%E8%99%9F%E8%AA%8C%E8%BE%A8%E8%AD%98%E5%AF%A6%E4%BD%9C-8ad4e0a3b38d * http://nfuee.nfu.edu.tw/ezfiles/42/1042/attach/61/pta_52980_2432061_18389.pdf ## 4/6 * https://hackmd.io/@nycu-109550128/SJOpTxQf5 #### NOT YET DONE * approach、baseline、evaluation metrics ## 4/17 #### approach * yolov_5:快,不准 * CNN:精準,消耗空間,慢 * 交通號誌辨識需要及時地做出反應 * 個人電腦空間可能放不下 #### evaluation metrics * 速度要夠快 * 準確率要夠高 #### baseline * opencv * adaboost * ~~CNN~~ * yolo(我們的方法) ## 進度 * CNN * 卷積、池化各兩層 * 卷積的kernel_size都是5\*5,第一層有32個filter,第二層64個filter * 池化尺寸皆縮小一半 * 隱藏層的數量暫時設為512個 * 可修改參數: * model.compile中的optimizer * https://keras.io/optimizers/ * https://chtseng.wordpress.com/2017/10/01/%e4%bd%bf%e7%94%a8cnn%e8%ad%98%e5%88%a5%e8%be%a6%e5%85%ac%e5%8d%80%e7%8b%80%e6%85%8b-1/ * https://chtseng.wordpress.com/2017/09/23/%e5%ad%b8%e7%bf%92%e4%bd%bf%e7%94%a8keras%e5%bb%ba%e7%ab%8b%e5%8d%b7%e7%a9%8d%e7%a5%9e%e7%b6%93%e7%b6%b2%e8%b7%af/
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up