# 大一奇數微積分共筆 (E6 A204)(Ch.7) :::info 授課教師:高華隆 ::: - 輸入數學式的操作說明可以在[這裡](https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference)找到 - 有的中文沒抄到,所以是找[國家教育研究院的數學名詞中英對照](http://www.mathland.idv.tw/scene/tables/mathchieng.pdf) - 上為簡易版,[詳細版可按此下載](http://terms.naer.edu.tw/terms/manager_admin/new_file_download.php?Pact=FileDownLoad&button_num=g5&source_id=284&Pval=1585) - 授課速度有點快,歡迎幫忙校稿或補充 - 方便複製: - $\lim \limits_{h \to 0}$ - $\dfrac {d}{dx}$ - $\lim \limits_{x \to a} \dfrac {f(x)}{g(x)}$ - $ [-\frac \pi 2, \frac \pi 2]$ # 微積分 Chapter7:Transcendental Functions ## 7-1 Inverse functions and their derivatives - 應該是其他版的,正確版本沒問題→~~前面相關單元: 1-6、(2-5)、3-8~~ ### One-to-one funtions - **Defintion** ![](https://i.imgur.com/j1KchHD.png) - A function $f(x)$ is **one-to-one** on a domain $D$ if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in $D$. $g(f(_j)) = x_j, \forall j$ $f(g(a_j)) = a_j, \forall j$ $g \equiv f^{-1}$ - **Example** ![](https://i.imgur.com/MHGKjY6.png) ![](https://i.imgur.com/1TSHhuR.png) :::success 1. $f(x) = \sqrt x : [0, \infty) \to \Bbb R \Rightarrow f$ is one-to-one on $[0, \infty)$ 2. $f(x) = x^2 : \Bbb R \to \Bbb R \Rightarrow f$ is not one-to-one on $\Bbb R \because f(-1) = f(1) = 1$ 3. $f(x) = \sin x : [0,\pi] \to \Bbb R \Rightarrow f$ is not one-t-one on $[0,\pi] \because f(0) = f(\pi) = 0$ 4. ::: - **Note:** :::warning 1. Some function are not one-to-one on their natural domain, but we can resrtict the function to a smaller domain s.t. the function is one-to-one 2. $f$ is one-to-one on $D \Leftrightarrow$ each horizontal line intersects the grapf $y=f(x)$ at most one point. ::: ### Inverse functions - **Definition:** :::info $f : D \to f(D)$ is one-to-one on a domain $D$ with range $f(D).$ The inverse function $f^{-1}:f(D) \to D$ of $f$ is defined by $$f^{-1}(b) = a \quad \mathsf{if} \; f(a) = b, \quad \forall b \in f(D)$$ ::: - **Note:** :::warning 1. "$f^{-1}$" reads "$f$ inverse" 2. $f^{-1} (f(x)) = x,\quad \forall x \in D$ $f(f^{-1}(y)) = y,\quad \forall y \in f(D)$ ::: ### Finding inverses - 圖形以 $x = y$為對稱軸,將x y對調 - 只有 one-to-one function 會擁有 inverse function ![](https://i.imgur.com/RvfXOCJ.png) - **Note** :::warning The graph $y = f^{-1}(x)$ is obtained by refleting the graph $y=f(x)$ about the line $y=x$ ::: - **Step** :::info 1. $y=f(x) \Rightarrow x = g(y)$ ex: $y=f(x) - x^2 \Rightarrow x = \sqrt y =\equiv g(y)$ 2. Interchange, $x$ and $y$ i.e. $y=g(x) \equiv f^{-1}(x)$ i.e. $y= \sqrt x = f^{-1}(x)$ ::: - **Example** ![](https://i.imgur.com/fyr4X3u.png) Find the inverse of $f= \frac x 2 +1$, expressed as a function of $x$ :::success **Sol:** $y = \frac x 2 +1 \Rightarrow x = 2y-2$ $\Rightarrow x = f^{-1}(y) = 2y-2$ $\Rightarrow y = f^{-1}(x) = 2x-2$ ::: ### Derivatives of inverses of differentiable functions - **Recall** If $f$ and $f^{-1}$ are diff. :::info $$ f(f^{-1}(x)) = x$$ ::: $1 = \frac d {dx} = \frac d {dx} f(f^{-1}(x)) = f'(f^{-1}(x)) \bullet \frac d {dx} f^{-1}(x)$ $\Rightarrow \frac d {dx} f^{-1}(x) = \frac a {f'(f^{-1}(x))}$ - **Theorem** ![](https://i.imgur.com/EBBsnQj.png) $I \subset \Bbb R$, on interval, $f:I \to f(I)$ is one-to-one 1. If f is conti. on $I \Rightarrow f^{-1}$ is conti. on $I$ 2. If $f$ is diff. on $I$ and $f'(x) \neq 0, \quad \forall x \in I$ 3. $\Rightarrow f^{-1}$ is diff. on I and, :::info $$\frac d {dx} f^{-1}(x) = \frac 1 {f'(f^{-1}(x))}$$ ::: - **Proof** ![](https://i.imgur.com/vOOSXRK.png) 1. Check: $\lim \limits_{y \to y_0} f^{-1}(y_0), \quad \forall y_0 \in f(I)$ :::info **Pf:** $y_0 = \lim \limits_{y \to y_0} y = \lim \limits_{y \to y_0} f(f^{-1}(y)) = f(\lim \limits_{y \to y_0} f^{-1}(y))$ $\Rightarrow f^{-1}(y_0) = \lim \limits_{y \to y_0} f^{-1}(y)$ $\because f$ is one-to-one $\Rightarrow f^{-1}(y_0) = \lim \limits_{y \to y_0} f^{-1}(y)$ ::: 2. Check: $\lim \limits_{y \to y_0} \frac {f^{-1}(y) f^{-1}(y_0)} {y - y_0}$ exist :::info **Pf:** $\forall y, y_0 \in f(I)$ $\Rightarrow \exists ! x, x_0 \in I$ s.t. $f(x) = y, f(x_0) = y_0$ $\lim \limits_{y \to y_0} \frac {f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim \limits_{y \to y_0} \frac {x - x_0}{f(x) - f(x_0)}$ ::: 沒抄到 - **Example** :::success $f(x) = x^2, x>0 \Rightarrow f^{-1}(x) = \sqrt x, x>0$ $\Rightarrow f'(x) = 2x$ $f^{-1}(4) =$ ::: - **Example** :::success $f(x) = x^3 - 2, x>0$ Find $f^{-1}(x)$ **Sol:** $f'(x) = 3x^2 \Rightarrow f'(2) = 12$ $f'(6) =$ ::: ## 7-2 Natural logarithms - 應該是其他版的,正確版本沒問題→~~1-6(定義)、3-8(微分)、8-3(三角函數積分)~~ ### logarithmic functions ![](https://i.imgur.com/Zx0iohf.png) ### Natural logarithms - **Defintion** The natural logarithms is the function defined by :::info $$\ln x = \int_1^x \frac 1 t dt, \quad \forall x >0$$ ::: ![](https://i.imgur.com/BPjqMWW.png) ![](https://i.imgur.com/hfPwU68.png) ![](https://i.imgur.com/dlHpH1h.png) - **Note** :::warning 1. $\ln 1 = 0$ 2. $\ln x > 0, \quad \forall x >1$ 3. $\ln x <0, \quad \forall 0 < x < 1$ 4. By F.T.O.C. $\Rightarrow \ln x$ is conti. and diff. on $(0, \infty)$, and $\frac d {dx} \ln x = \frac 1 x$ 5. $\ln 2 < 1 < \ln 3$ By I.V.T. $\Rightarrow \exists$ a number $e \in (2,3)$ s.t. $1 = \ln e = \int_1^e \frac 1 t dt$ 6. if $f(x) >0$ By chain rule $\Rightarrow \frac d {dx} \ln f(x) = \frac {f'(x)}{f(x)}$ ::: - **Example** :::success 1. $\frac d {dx} \ln 2x = \frac 2 {2x} = \frac 1 x, x>0$ 2. $\frac d {dx} \ln (x^2 + 3) = \frac{2x}{x^2 +3}$ 3. $\frac d {dx} \ln |x| = \frac 1 {|x|} \cdot \frac x{|x|} = \frac x {x^2} = \frac 1 x$ 4. $\frac d {dx} \ln bx = \frac b {bx} = \frac 1 x, \quad \forall x,b >0$ ::: - **Properties** ![](https://i.imgur.com/6agf0rx.png) :::info 1. $\ln bx = \ln b + \ln x, \quad \forall x, b >0$ 2. $\ln \frac b x = \ln b - \ln x, \quad \forall x, b >0$ 3. $\ln \frac 1 x = - \ln x, \quad \forall x >0$ 4. $\ln x^r = r \ln x, \quad \forall x >0, \forall r \in \Bbb Q$ ::: ### 多項式微分證明 - $$\frac d {dx} x^n = n x^{n-1}$$ - Case 1: $n \in \Bbb N$ :::success **Proof:**(Using M.I.T.) $n = 1 \Rightarrow \frac d{dx} x=1 = 1x^{1-1}$ assume $\frac d{dx} x^{n-1} = (n-1) x^{(n-1)-1}$ holds $\frac d {dx} x^n = \frac d {dx} x \bullet x^{n-1} = x^{n-1} +x(n-1)x^{n-2}$ $= nx^{n-1}$ - Case 2: $\frac d {dx} x^{-n} = (-n) x^{-n-1}, \quad \forall n \in \Bbb N$ :::success **Proof:** ::: - Case 3: $\frac d {dx} x^{\frac 1 m}, \quad m \in \Bbb N$ :::success **Proof:** - $\frac d {dx} x^n = n \cdot x^{n-1}, n \in \Bbb Q$ - Case: **Proof** - $\ln x^r = r \ln x,\quad \forall r \in \Bbb Q$ - **Proof** 暫時省略 - **Note** :::warning $\ln x:(0, \infty) \to (- \infty, \infty)$ is one-to-one, onto, incresing, concave down ::: ### Integrals - $$\frac d {du} \ln |u| = \frac 1 u$$ $\Rightarrow \int \frac 1 u du = \ln |u| + c$ If $u = f(x),$ diff. and $f(x) \neq 0, \quad \forall x$ $\Rightarrow du = f'(x) dx$ $\Rightarrow \int \frac{f'(x)}{f(x)}dx = \ln |f(x)| +c$ - **Example** $\int_{-\frac \pi 2}^{\frac \pi 2} \dfrac{4 \cos \theta}{3 + 2 \sin \theta}du$, :::success $u=3 + 2 \sin \theta$ $du= 2 \cos \theta d \theta$ $\int_1^5 \frac 2 u du = 2 \ln |u| |_1^5 = 2(\ln 5 - \ln 1) = 2 \ln 5$ ::: ### The integrals of tan x, cot x, sec x, csc x - **Prop.** :::info 1. $\int \tan u \; du = \ln |\sec u| + C$ ::: **Proof:** $\int \tan x \; dx = \int \dfrac {\sin x}{\cos x} dx$ Let $u = \cos x ,\quad du = -\sin x \; dx$ $= -\ln |u| + C$ $= \ln \frac 1 {|\cos x|} + C$ $= \ln |\sec x| +C$ **Q.E.D** :::info 2. $\int \cot x \; dx = \ln |\sin x| +C$ ::: **Proof:** $\int \cot x \; dx = \int \dfrac {\cos x}{\sin x} dx$ Let $u = \sin x, \quad du = \cos x \; dx$ $=\ln |u| + C$ $=\ln |\sin x| +C$ **Q.E.D** :::info 3. $\int \sec x \; dx = \ln |\sec x + \tan x| +C$ ::: **Proof:** $\int \sec x \; dx$ $= \int \dfrac {\sec ^2 x + \sec x \tan x}{\sec x + \tan x} dx$ Let $u = \sec x + \tan x,\quad du = (\sec^2 x + \sec x \tan x)dx$ $=\ln |u| + C$ $=\ln |\sec x + \tan x|+C$ **Q.E.D** :::info 4. $\int \csc x \; dx = - \ln |\csc x + \cot x| + C$ ::: **Proof:** $\int \csc x \; dx$ $= \int \dfrac{-\csc^2 x+\csc x \cot x}{\csc x + \cot x}$ Let $u = \sec x + \cot x,\quad du = (-\csc^2 x + \csc x \cot x)dx$ $= - \ln |u| +C$ $= - \ln |\csc x + \cot x| + C$ **Q.E.D** - **Note** :::warning $y = \dfrac {f_1(x) f_2(x) ... f_k(x)}{g_1(x)g_2(x)...g_m(x)}$ $\ln y = \ln f_1(x) + \ln f_2(x) + ... + \ln f_k(x) - \ln g_1(x) - \ln g_2(x) -...- \ln g_m(x)$ $y' = (\dfrac {f_1'(x)}{f_1(x)} + ... + \dfrac {f_k'(x)}{f_k(x)} - \dfrac {g_1'(x)}{g_1(x)} - ... - \dfrac {g_m'(x)}{g_m(x)})y$ ::: ## 7-3 Exponential functions - Recall $\ln x = \int_1^x \dfrac 1 t dt:(0, \infty) \to (-\infty, \infty)$, one-to-one, onto $\Rightarrow \ln ^{-1} x : \Bbb R \to (0, \infty)$ exists Define ==$\exp (x) \equiv \ln ^{-1} x$==, $\quad \forall x \in \Bbb R$ $\Rightarrow$ 1. $\ln e = 1 \Rightarrow \exp(1) = e = e^1$ 2. $\ln e^r = r \cdot \ln e = r \Rightarrow \exp(r) = e^r, \quad \forall r \in \Bbb Q$ $\Rightarrow$ ### e The inverse function of $\exp (x)$ is $\;\ln (x)$ The inverse function of $\;\;\; e^x \;\;\;$ is $\;\log _e x$ - $$\ln x = \log_e x$$ - **Note** :::warning 1. $\ln x = \int_1^x \frac 1 t$ 2. $e^x = \exp (x)$ 3. $\ln x = 10$ 4. $e^{\ln x} = x$ 5. $\ln (e^x) = x$ ::: - **Prop.** (General power rule for derivative) For $x \in \Bbb R, \quad n \in \Bbb R \Rightarrow$ :::info $$\dfrac d {dx} x^n = n x ^{n-1}$$ ::: wherever $x^n$ and $x^{n-1}$ exist. - **Proof** Case 1: $x>0$ $x^n = e^{n \ln x}$ $\dfrac d {dx} x^n = e^{n \ln x} n \dfrac 1 x = n x^n \dfrac 1 x$ $= nx^{n-1}$ Case 2: $x<0$ Let $u=-x >0$ $\dfrac d {dx} x^n = \dfrac d {dx} (-1)^n u^n = (-1)^n n u^{n-1} (-1)$ $n(-u)^{n-1} = nx^{n-1}$ Case 3: $x=0$ $\lim \limits_{h \to 0} \frac {(0+h)^n - (0)^n}{h}= \lim \limits_{h \to 0} h^{n-1} = 0 = nx^{n-1}|$ - **Example** For $x>0$ $\dfrac d {dx} x^x$ $= \dfrac d {dx} e^{\ln x^x}$ $= \dfrac d {dx} e^{x \ln x}$ $= e^{x \ln x}(\ln x +1)$ $= x^x(\ln x +1)$ ### The number e - **Theorem 4** :::info $e = \lim \limits_{h \to 0}(1+x)^{\dfrac 1 x} \equiv \lim \limits_{h \to \infty}(1 + \dfrac 1 t)^t$ ::: - **Proof** Let $f(x) = \ln x \Rightarrow f'(x) = \dfrac 1 x$ $\ln e = 1 = f'(1) = \lim \limits_{h \to 0} \dfrac{f(1+x) - f(1)} x$ $= \lim \limits_{h \to 0} \frac 1 x \ln(1+x) = \lim \limits_{h \to 0} \ln (1+x)^{\frac 1 x}$ $\therefore \ln x$ is one-to-one $\Rightarrow e = \lim \limits_{h \to 0} (1+x)^{\dfrac 1 x}$ - **Theorem** - **Properties:** $\dfrac {d}{dx} a^{f(x)}, \quad a>0$ :::info 1. $\dfrac {d}{dx} a^x = (\ln a) \cdot a^x, \quad \forall a >0$ **Proof:** $\dfrac {d}{dx} a^x = \dfrac {d}{dx} e^{\ln a^x} = \dfrac {d}{dx} e^{x \ln a}$ 2. $\int a^x dx = \dfrac 1 {\ln a} a^x +c, \quad a>0$ 3. $\dfrac {d}{dx} a^{f(x)} = \ln a \cdot a^{f(x)} \cdot f'(x)$ **Proof:** $\dfrac {d}{dx} e^{\ln a ^{f(x)}} = \dfrac {d}{dx} e^{(\ln a) \cdot f(x)}$ $= e^{\ln a \cdot f(x)} = \dfrac {d}{dx} e^{(\ln a) \cdot f(x)}$ $= e^{(\ln a) \cdot f(x)} \cdot \ln a \cdot f'(x)$ $= a^{f(x)} \cdot \ln a \cdot f'(x)$ 4. $\int a^u du = \dfrac 1 {\ln a} a^u + c$ **i.e.** $\int a^{f(x)} \cdot f'(x)dx = \dfrac 1 {\ln a} a^{f(x)} +c$ 5. If $a>1$ $\Rightarrow \ln a > 0 \Rightarrow \dfrac {d}{dx} a^x = \ln a \cdot a^x >0$ $\Rightarrow a^x$ is increasing, one-to-one 6. If $0<a<1 \Rightarrow \ln a <0$ $\Rightarrow \dfrac {d}{dx} a^x <0, \dfrac {d^2}{dx^2} a^x >0$ $\Rightarrow a^x$ is decresing, one-to-one, concave up ::: - **Example** 1. $\dfrac {d}{dx} 3^x = (\ln 3) \cdot 3^x$ 2. $\dfrac {d}{dx} 3^{-x} = -(\ln 3) \cdot 3^{-x}$ 3. $\dfrac {d}{dx} 3^{\sin x} = (\ln 3) \cdot 3^{\sin x} \cdot \cos x$ 4. $\int 2^{\sin x} \cos x dx$ $(u = \sin x, \quad du = \cos x dx)$ $= \int 2^u du$ $= \dfrac 1 {\ln 2} 2^{\sin x} +c$ ### Logarithms with base $a: \log_a x$ - **Definition** For $a > 0, a \neq 1, \log_a x$ is the inverse function f $a^x : \Bbb R \to (0, \infty)$ - **Note** $a>0, a \neq 1$ $a^x : \Bbb R \to (0, \infty)$ $\log_a x:(0,\infty) \to \Bbb R$ : 圖 - **Properties** :::info 1. $a^{log_a x} = x, \quad x>0$ 2. $\log_a a^x = x, \quad x \in \Bbb R$ 3. $\log_a xy = \log_a x + \log_a y$ 4. $\log_a \frac x y = \log_a x - \log_a y$ 5. $\log_a x^y = y \cdot \log_a x$ 6. $\log_a x = \dfrac {\ln x}{\ln a} = \dfrac{\log_e x}{\log_e a}$ 7. $\dfrac {d}{dx} \log_a x = \dfrac {d}{dx} \dfrac 1 {\ln a} \cdot \ln x =\dfrac 1 {\ln a} \cdot \dfrac 1 x$ 8. $\dfrac {d}{dx} \log_a f(x) = \dfrac {d}{dx} \dfrac{\ln f(x)} {\ln a} = \dfrac 1 {\ln a} \cdot \dfrac {f'(x)}{f(x)}$ ::: - **Example** 1. $\dfrac {d}{dx} \log_{10} (3x+1) = \dfrac 1 {\ln 10} \cdot \dfrac 3 {3x+1}$ 2. $\int \dfrac {\log_2 x } x dx = \int \dfrac {\ln x} {x \cdot \ln 2} dx$ $(u = \ln x, \quad du = \frac {dx} x)$ $= \dfrac 1 {\ln 2} \int udu$ $= \dfrac 1 {2 \ln 2}(\ln x)^2$ ### 用兩堂課講的四個重點微分公式 $$\mathsf{ 原式 \qquad 微分}$$ $$\ln x \qquad \frac 1 x$$ $$e^x \qquad e^x$$ $$a^{f(x)} \qquad e^{f(x) \ln a}$$ $$\log_a f(x) \qquad \frac {\ln f(x)}{\ln a} $$ ## 7-5 Indeterminate forms and L'Hôpital's rule 羅必達法則 ### L'Hôpital's rule 羅必達法則 - Find :::info $$\lim \limits_{x \to a} \dfrac {f(x)}{g(x)} = \lim \limits_{x \to a} \dfrac {f'(x)}{g'(x)}$$ ::: Case 1: $$\dfrac {f(a)}{g(a)} = \dfrac 0 0 or \dfrac \infty \infty$$ - **Theorem 5 L’Hôpital’s rule** $a \in (\alpha, \beta) \subseteq \Bbb R, \quad f, g:(\alpha, \beta) \to \Bbb R$ are diff. on $(\alpha, \beta)$ $f(a) = g(a) = 0$ and $g'(x) \neq 0, \quad \forall x \in (\alpha, \beta)$ \\$\{a\}$ $\lim \limits_{x \to a} \dfrac {f(x)}{g(x)} = \lim \limits_{x \to a} \dfrac {f'(x)}{g'(x)}$ provied the limit of **RHS** exists - **Example** 1. $\lim \limits_{x \to 0} \dfrac {}{}$ 2. $\lim \limits_{x \to 0} \dfrac {}{}$ 3. $\lim \limits_{x \to 0} \dfrac{}{}$ 4. $\lim \limits_{x \to 0} \dfrac {}{}$ 5. $\lim \limits_{x \to 0} \dfrac {}{}$ 6. $\lim \limits_{x \to 0} \dfrac {}{}$ 7. $\lim \limits_{x \to 0} \dfrac {}{}$ ### Cauchy's Mean Value Theorem 柯西均值定理 - **definition** $f, g: [a,b] \to \Bbb R$ are conti. on $[a,b]$, diff. on $(a,b)$ $\Rightarrow \exists c \in (a,b)$ $\qquad s.t. (f(b)-f(a)) g'(c)=(g(b)-g(a))f'(c)$ $\qquad i.e. \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}$ - **Proof** Let $h(x) = (f(b)-f(a))(g(x)-g(a))-(g(b)-g(a))(f(x)-f(a))$ $\Rightarrow h$ is conti. on $[a,b]$, diff. on $(a,b)$ and $h(a) = 0 = h(b)$ By Rolle's thm. $\Rightarrow \exists c \in (a,b)$ s.t. $0 = h'(c) = (f(b)-f(a))g'(c)-(g(b)-g(a))f'(c)$ - **Note** $\exists c \in (a,b)$ s.t. $\dfrac {f(b)-f(a)}{g(b)-g(a)} = \dfrac {f'(c)}{g'(c)}$ if $g(a) \neq g(b)$ - **Proof of thm 5** 略?還是現在下面的是在講證明 $\lim \limits_{x \to a} \dfrac {f(x)}{g(x)} = \lim \limits_{x \to a} \dfrac {f'(x)}{g'(x)} \quad$ if $\dfrac {f(a)}{g(a)} = \dfrac 0 0$ $\dfrac{f(a)}{g(a)} = \dfrac{\pm \infty}{\pm \infty}, \quad f(a) \cdot g(a) = 0 \cdot \infty, \quad f(a) - g(a) = \infty - \infty$ - **Note** If $f(x), g(x) \to \pm \infty$ as $x \to a$ $\lim \limits_{x \to a} \dfrac {f(x)}{g(x)} = \lim \limits_{x \to a} \dfrac {\frac 1 {g(x)}}{\frac 1 {f(x)}} = \lim \limits_{x \to a} \dfrac {\frac {+ g'(x)} {g^2(x)}}{\frac {+f'(x)} {f^2(x)}} = \lim \limits_{x \to a} \dfrac {f(x)}{g(x)} \cdot \lim \limits_{x \to a} \dfrac {g'(x)}{ f'(x)}$ $\lim \limits_{x \to a} \dfrac {g'(x)}{ f'(x)}= \lim \limits_{x \to a} \dfrac {f(x)}{ g(x)}$ - **Example** 1. $\lim \limits_{x \to \frac \pi 2} \dfrac {\sec x}{ 1 +\tan x} = \lim \limits_{x \to \frac \pi 2} \dfrac {1}{ \cos x + \sin x} = \dfrac 1 {1+0} = 1$ 2. ($\frac \infty \infty$) $\lim \limits_{x \to \frac \pi 2} \dfrac {\sec x}{ 1 +\tan x} = \lim \limits_{x \to \frac \pi 2} \dfrac {1}{ \cos x + \sin x} = \dfrac 1 {1+0} = 1$ 3. ($\frac \infty \infty$) $\lim \limits_{x \to \infty} \dfrac {\ln x}{ 2 \sqrt x} = \lim \limits_{x \to \infty} \dfrac {\dfrac 1 {x}}{ \frac 1 {\sqrt x}} = \lim \limits_{x \to \infty} \dfrac {1}{ \sqrt x} = 1$ 4. ($\infty \cdot 0$) 待補 $\lim \limits_{x \to \frac \pi 2} \dfrac {\sec x}{ 1 +\tan x} = \lim \limits_{x \to \frac \pi 2} \dfrac {1}{ \cos x + \sin x} = \dfrac 1 {1+0} = 1$ 5. ($0 \cdot \pm \infty$) 待補但我發現我沒拍到 6. ($\infty - \infty$) 待補但我發現我沒拍到 - **Note** $1^{\infty}, 0^0, \infty^0$ $\lim \limits_{x \to a} f(x) = \lim \limits_{x \to a} e^{\ln f(x)} = e^{\lim \limits_{x \to a} \ln f(x)}$ - **Example** 1. $\lim \limits_{x \to 0^+} (1+x)^{\frac 1 x} = \lim \limits_{x \to 0^+} e^{\frac {\ln (1+x)} x} = e ^{\lim \limits_{x \to 0^+} \frac {\ln (1+x)} x} = e^{\lim \limits_{x \to 0^+} \frac {\frac 1 {1+x}} 1} = e^1 = e$ 2. $\lim \limits_{x \to 0^+} x^{\frac 1 x} = \lim \limits_{x \to 0^+} e^{\frac {\ln x} x} = e ^{\lim \limits_{x \to 0^+} \frac {\ln x} x} = e^{\lim \limits_{x \to 0^+} \frac {\ln x} x} = e^{\lim \limits_{x \to 0^+} \frac { \frac 1 x} 1} = e^0 = 1$ ## 7-6 Inverse trigonometric functions 反三角函數 - **Definition** ==反三角函數的值是一個角度== $\sin x:[-\frac \pi 2, \frac \pi 2] \to [-1, 1]$ is one-to-one $\Rightarrow \sin^{-1} x : [-1,1] \to [-\frac \pi 2, \frac \pi 2]$ ![](https://i.imgur.com/on36a9N.png) ![](https://i.imgur.com/DQ3wWFD.png) ![](https://i.imgur.com/661SHBk.png) ### The Arcsine and Arccosine Function - **Definition** ![](https://i.imgur.com/ZabHzPH.png) - **Example** ![](https://i.imgur.com/i6bi3LK.png) $\sin ^{-1} (1) = \dfrac \pi 2$ 算了我懶得打我相信大家都知道!!! $\cos ^{-1} (1) = 0$ $\cos ^{-1} (\dfrac {\sqrt 3} 2) = \dfrac \pi 6$ $\cos ^{-1} (\dfrac {\sqrt 2} 2) = \dfrac \pi 4$ $\cos ^{-1} (\dfrac 1 2) = \dfrac \pi 3$ $\cos ^{-1} (0) = \dfrac \pi 2$ $\cos ^{-1} (-1) = \pi$ $\cos ^{-1} (- \dfrac {\sqrt 3} 2) = \dfrac 5 6 \pi$ $\cos ^{-1} (- \dfrac {\sqrt 2} 2) = \dfrac 3 4 \pi$ $\cos ^{-1} (- \dfrac 1 2) = \dfrac 2 3 \pi$ > [name=教授] (前略)......然後某一天我就發現我好像能反著背英文字母了,你們知道為什麼我要跟你們講這個小故事了吧 - 對sin有夠熟就知道arcsin在幹嘛了 - **Note** 1. $\sin ^{-1} (-x) = -\sin ^{-1} x$, ==**odd function**== 2. $\cos ^{-1} + cos^{-1} (-x) = \pi$ **Proof** Let $\theta = \cos^{-1} (x) \Rightarrow \cos \theta = x$ $\cos(\pi - \theta) = - \cos \theta = -x$ $\Rightarrow \cos^{-1} (-x) = \pi - \theta = \pi - cos^{-1} x$ 3. $\sin^{-1} x + \cos^{-1} x = \dfrac \pi 2, \quad \forall x \in [0,1]$ 4. ![](https://i.imgur.com/L68QUae.png) - **Example** ![](https://i.imgur.com/ouhEKSr.png) 我要睡著了 所以我要先睡覺 ### Inverses of tan x, cot x, sec x, and csc x ![](https://i.imgur.com/T6y1odG.png) ![](https://i.imgur.com/L68QUae.png) - 睡著了所以tan x, cotx, sec x都沒打 $\csc x:[- \dfrac \pi 2, 0) \cup (0, \dfrac \pi 2] \to (-\infty, -1] \cup [2, \infty)$ is one-to-one $\Rightarrow \csc^{-1} x:(-x,-1] \cup [1, \infty) \to [-\dfrac \pi 2, 0) \cup (0, \dfrac \pi 2]$ - **Note** $\sec^{-1} x + \csc^{-1} x = \dfrac \pi 2$ - **Derivatives** $(\dfrac d {dx} f^{-1}(x) = \dfrac 1 {f'(f(x))})$ 1. $\dfrac d {dx} \sin ^{-1} x = \dfrac 1 {\sqrt {1-x^2}}$ ### 反三角函數的定義域、值域、微分 - 定義域和值域 $\sin^{-1} x : [-1, 1] \to [- \dfrac \pi 2, \dfrac \pi 2]$ $\cos^{-1} x : [-1,1] \to [0, \pi]$ $\tan^{-1} x : \Bbb R \to (-\dfrac \pi 2, \dfrac \pi 2)$ $\cot^{-1} x : \Bbb R \to (0, \pi)$ $\sec^{-1} x: \Bbb R \setminus (-1,1) \to [0, \pi] \setminus \{\dfrac \pi 2\}$ $\csc^{-1} x: \Bbb R \setminus (-1,1) \to [- \dfrac \pi 2, \dfrac \pi 2] \setminus \{0\}$ - **Derivatives** 1. $\dfrac {d}{dx} \sin^{-1} x = \dfrac 1 {\sqrt {1-x^2}}, \quad |x|<1$ 2. $\dfrac {d}{dx} \cos^{-1} x = \dfrac {-1}{\sqrt{1-x^2}}, \quad |x|<1$ 3. $\dfrac {d}{dx} \tan^{-1} x = \dfrac 1 {1+x^2}, \quad x \in \Bbb R$ - **Proof:** $\dfrac {d}{dx} \tan^{-1} x = \dfrac 1 {\sec ^2(tan^{-1} x)} = \dfrac 1 {1+\tan^2 (tan^{-1} x)} = \dfrac 1 {1+x^2}$ 4. $\dfrac {d}{dx} \cot ^{-1} x = \dfrac {-1}{1+x^2}, \quad x \in \Bbb R$ 5. $\dfrac {d}{dx} \sec ^{-1} x = \dfrac 1 {|x| \sqrt{x^2 - 1}}, \quad |x|>1$ - **Proof:** $\dfrac {d}{dx} \sec^{-1} = \dfrac 1 {\sec(\sec ^{-1} x) \cdot \tan(\sec ^{-1} x}$ $= \dfrac 1 {|x| \sqrt {x^2 -1}}, \quad |x| > 1$ 6. $\dfrac {d}{dx} \csc ^{-1} x = \dfrac {-1}{|x| \sqrt {x^2 -1}} , \quad |x| > 1$ - **Example** 1. $\dfrac {d}{dx} \sin ^{-1} x^2 = \dfrac {2x} {\sqrt {1-x^4}}$ 2. $\dfrac {d}{dx} \sec ^{-1} (5x^4) = \dfrac {20x^3} {5x^4 \sqrt {25x^8 -1}} = \dfrac 4 {x \sqrt {25x^8 - 1}}$ - **Integral** For $a>0$ 1. $\int \dfrac 1 { \sqrt {a^2 - u^2}} du = \sin ^{-1} ( \dfrac u a) +c \quad$, For $|u|<a$ 2. $\int \dfrac 1 { a^2 + u^2} du = \dfrac 1 a \tan ^{-1} ( \dfrac u a) +c \quad$, $\forall u$ 3. $\int \dfrac 1 { u \sqrt {u^2 - a^2}} du = \dfrac 1 a \sec ^{-1} ( |\dfrac u a|) +c \quad$, $\forall |u| > a$ - **Example** 1. $\int ^{\frac{\sqrt 3}{2}}_{\frac{\sqrt 2}{2}} \dfrac{1}{\sqrt{1-x^2}}$ $=\sin^{-1}x ^{\frac{\sqrt 3}{2}} _{\frac{\sqrt 2}{2}}$ $= \frac{\pi}{3}-\frac{\pi}{4} = \frac{\pi}{12}$ 2. $\int \dfrac {dx} {\sqrt{3 - 4x^2}}$ ($u = 2x, \quad du = 2dx$) $= \dfrac 1 2 \int \dfrac 1 {\sqrt {3 - u^2}} du$ 3. $\int \dfrac 1 {\sqrt {e^{2x} -6}} dx$ $= \dfrac 1 {\sqrt 6} \sec ^{-1} \dfrac {e^x} {\sqrt 6} + c$ 4. $\int \dfrac 1 { \sqrt {4x-x^2}}$ $= \int \dfrac 1 {\sqrt {4 - (4-4x+x^2)}} dx$ $= \int \dfrac 1 {\sqrt {4 - (x-2)^2}} dx$ ($u = x-2, \quad du = dx$) $= \int \dfrac 1 {\sqrt {4-u^2}} du$ $= \sin ^{-1} (\dfrac {x-2} 2) +c$ ## 7-8 Relative rates of growth (衝到 $\infty$ 的速度比較) ($\ln$最慢,而且是越多越慢) ![](https://i.imgur.com/UdclGaX.png) - **Definition** $f(x), g(x) \to \infty$ as $x \to \infty$ ![](https://i.imgur.com/vM9xnu3.png) 1. $f$ grows faster than $g$ ( $g$ is of smaller order than $f$ ) as $x \to \infty$ (write $g = o(f)$) if $\lim \limits_{x \to \infty} \dfrac {g(x)} {f(x)} = 0$ (i.e. $\lim \limits_{x \to \infty} \dfrac {f(x)} {g(x)} = \infty$ 2. $f$ and $g$ grow at the same rate as $x \to \infty$ (write $f \sim g$) 3. $f$ is of at most order of $g$ as $x \to \infty$ if $\exists M>0$ s.t. $\dfrac{f(x)}{g(x)} ≤ M$ for large $x$.(write $f = O(g)$) - **Note** 1. $h = o(g), g=o(f) \Rightarrow h=o(f)$ 2. $f \sim g \Rightarrow g \sim f$ 3. $h \sim g, g \sim f \Rightarrow h \sim f$ 4. $x^n = o(x^m), m>n$ 5. $x^n = o(e^x), \forall n>0$ 6. $\ln x = o(x^n), \forall n >0$ 7. $p(x) = a_nx^n + ... + a_0, a_n > 0$ $q(x) = b_m x^m + ... + b_0, b_n > 0$ $\Rightarrow$ 1. $p = o(q)$ if $m>n$ 2. $p \sim q$ if $m = n$ - **Example** 1. $2^x = o(3^x)$$(since \lim \limits_{x \to \infty} \frac{2^x}{3^x} = 0)$ 2. $a^x = o(b^x)$ if $0<a<b$ 3. $a>1, b>1$ $\Rightarrow log_a x \sim log_b x$ (第八章另開檔案)