# 在MQTT 下的影像傳輸與物件檢測 ## 本次實驗使用 ESP32-CAM 來做影像傳輸與 YOLOv5 模型對保存的圖片進行物件檢測 YOLOv5 是一個物件偵測方法,可直接從輸入圖像生成邊界框和分類結果,適合對速度有高要求的應用,如即時檢測。 ![image](https://hackmd.io/_uploads/H1r-qBsXJx.png) ![image](https://hackmd.io/_uploads/HkKb2ziQke.png) ![image](https://hackmd.io/_uploads/HyUOUbiXyx.png) ![image](https://hackmd.io/_uploads/SyFR8WomJx.png) arduino(使用C) ```c #include <esp_camera.h> // 引入ESP32相機功能庫 #include <WiFi.h> // 引入WiFi功能庫 #include <PubSubClient.h> // 引入MQTT功能庫 // ------ WiFi帳號密碼 ------ const char* ssid = "HPC_1"; // 定義WiFi名稱 const char* password = "HPC200-1"; // 定義WiFi密碼 // ------ MQTT設定 ------ const char* mqtt_server = "mqtt.eclipseprojects.io"; // 定義MQTT伺服器位址 const unsigned int mqtt_port = 1883; // 定義MQTT伺服器的通訊埠 #define MQTT_PUBLISH_Monitor "ESP32CAM_hpcLab/esp32cam/pic" // 定義發布圖片的Topic名稱 // ------ OV2640相機設定 ------------ #define CAMERA_MODEL_AI_THINKER // 指定相機模組為AI-THINKER #define PWDN_GPIO_NUM 32 // 定義相機的電源控制引腳 #define RESET_GPIO_NUM -1 // 定義相機的重置引腳 (未使用) #define XCLK_GPIO_NUM 0 // 定義相機的時鐘信號引腳 #define SIOD_GPIO_NUM 26 // 定義SCCB的資料引腳 #define SIOC_GPIO_NUM 27 // 定義SCCB的時鐘引腳 #define Y9_GPIO_NUM 35 // 定義影像數據引腳Y9 #define Y8_GPIO_NUM 34 // 定義影像數據引腳Y8 #define Y7_GPIO_NUM 39 // 定義影像數據引腳Y7 #define Y6_GPIO_NUM 36 // 定義影像數據引腳Y6 #define Y5_GPIO_NUM 21 // 定義影像數據引腳Y5 #define Y4_GPIO_NUM 19 // 定義影像數據引腳Y4 #define Y3_GPIO_NUM 18 // 定義影像數據引腳Y3 #define Y2_GPIO_NUM 5 // 定義影像數據引腳Y2 #define VSYNC_GPIO_NUM 25 // 定義垂直同步引腳 #define HREF_GPIO_NUM 23 // 定義水平同步引腳 #define PCLK_GPIO_NUM 22 // 定義像素時鐘引腳 char clientId[50]; // 定義MQTT客戶端ID字串緩衝區 WiFiClient wifiClient; // 定義WiFi客戶端 PubSubClient mqttClient(mqtt_server, mqtt_port, mqtt_callback, wifiClient); // 定義MQTT客戶端 // 啟動WiFi連線 void setup_wifi() { Serial.printf("\nConnecting to %s", ssid); // 顯示連接的WiFi名稱 WiFi.begin(ssid, password); // 開始連接WiFi while (WiFi.status() != WL_CONNECTED) { // 持續檢查連線狀態 delay(500); Serial.print("."); // 顯示連接過程的提示 } Serial.print("\nWiFi Connected. IP Address: "); // 顯示WiFi連線成功訊息 Serial.println(WiFi.localIP()); // 顯示取得的IP位址 } // 重新連線到MQTT伺服器 boolean mqtt_nonblock_reconnect() { boolean doConn = false; // 定義連線狀態標誌 if (! mqttClient.connected()) { // 檢查是否已連線 boolean isConn = mqttClient.connect(clientId); // 嘗試連線到MQTT伺服器 char logConnected[100]; // 定義記錄訊息的字串緩衝區 sprintf(logConnected, "MQTT Client [%s] Connect %s !", clientId, (isConn ? "Successful" : "Failed")); // 格式化連線訊息 Serial.println(logConnected); // 顯示連線結果 } return doConn; // 返回連線狀態 } // MQTT傳遞照片 void MQTT_picture() { camera_fb_t * fb = NULL; // 定義相機緩衝區 fb = esp_camera_fb_get(); // 從相機取得圖片 if (!fb) { // 如果獲取圖片失敗 delay(100); Serial.println("Camera capture failed, Reset"); // 顯示錯誤訊息 ESP.restart(); // 重新啟動ESP32 } char* logIsPublished; // 定義傳輸結果訊息的指標 if (! mqttClient.connected()) { // 如果MQTT連線中斷 Serial.printf("MQTT Client [%s] Connection LOST !\n", clientId); // 顯示錯誤訊息 mqtt_nonblock_reconnect(); // 嘗試重新連線 } if (! mqttClient.connected()) logIsPublished = " No MQTT Connection, Photo NOT Published !"; // 顯示傳輸失敗訊息 else { int imgSize = fb->len; // 獲取圖片大小 int ps = MQTT_MAX_PACKET_SIZE; // 定義MQTT封包大小 mqttClient.beginPublish(MQTT_PUBLISH_Monitor, imgSize, false); // 開始傳輸圖片 for (int i = 0; i < imgSize; i += ps) { // 將圖片分段傳輸 int s = (imgSize - i < s) ? (imgSize - i) : ps; // 計算每段大小 mqttClient.write((uint8_t *)(fb->buf) + i, s); // 傳輸圖片數據 } boolean isPublished = mqttClient.endPublish(); // 結束圖片傳輸 if (isPublished) logIsPublished = " Publishing Photo to MQTT Successfully !"; // 顯示成功訊息 else logIsPublished = " Publishing Photo to MQTT Failed !"; // 顯示失敗訊息 } Serial.println(logIsPublished); // 顯示傳輸結果 esp_camera_fb_return(fb); // 清空相機緩衝區 } // 初始化函數 void setup() { Serial.begin(115200); // 初始化序列埠 // 相機設定 camera_config_t config; // 定義相機配置結構體 config.ledc_channel = LEDC_CHANNEL_0; // 設定LED控制通道 config.ledc_timer = LEDC_TIMER_0; // 設定LED控制計時器 config.pin_d0 = Y2_GPIO_NUM; // 設定數據引腳 config.pin_d1 = Y3_GPIO_NUM; config.pin_d2 = Y4_GPIO_NUM; config.pin_d3 = Y5_GPIO_NUM; config.pin_d4 = Y6_GPIO_NUM; config.pin_d5 = Y7_GPIO_NUM; config.pin_d6 = Y8_GPIO_NUM; config.pin_d7 = Y9_GPIO_NUM; config.pin_xclk = XCLK_GPIO_NUM; // 設定時鐘信號引腳 config.pin_pclk = PCLK_GPIO_NUM; // 設定像素時鐘引腳 config.pin_vsync = VSYNC_GPIO_NUM; // 設定垂直同步引腳 config.pin_href = HREF_GPIO_NUM; // 設定水平同步引腳 config.pin_sscb_sda = SIOD_GPIO_NUM; // 設定SCCB資料引腳 config.pin_sscb_scl = SIOC_GPIO_NUM; // 設定SCCB時鐘引腳 config.pin_pwdn = PWDN_GPIO_NUM; // 設定電源控制引腳 config.pin_reset = RESET_GPIO_NUM; // 設定重置引腳 config.xclk_freq_hz = 20000000; // 設定時鐘頻率 config.pixel_format = PIXFORMAT_JPEG; // 設定像素格式為JPEG config.jpeg_quality = 10; // 設定JPEG品質 (數字越小品質越高) config.fb_count = 2; // 設定幀緩衝數量 // 設定照片解析度 config.frame_size = FRAMESIZE_QVGA; // 設定照片大小為QVGA esp_err_t err = esp_camera_init(&config); // 初始化相機 delay(500); // 延遲500ms // 啟動WiFi連線 setup_wifi(); sprintf(clientId, "ESP32CAM_shiaw87"); // 設定MQTT客戶端ID // 啟動MQTT連線 mqtt_nonblock_reconnect(); } // 主循環函數 void loop() { mqtt_nonblock_reconnect(); // 確保MQTT連線 MQTT_picture(); // 透過MQTT傳輸照片 delay(500); // 延遲300ms } ``` detect.py ```python # YOLOv5 by Ultralytics, GPL-3.0 license """ Run inference on images, videos, directories, streams, etc. Usage - sources: $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python path/to/detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s.xml # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU """ import argparse import os from re import S import sys from pathlib import Path import requests import time import torch import torch.backends.cudnn as cudnn import logging logging.getLogger().setLevel(logging.ERROR) # 設定全局日誌層級為 ERROR,只顯示錯誤訊息 import warnings warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) import paho.mqtt.client as mqtt # MQTT 設定 MQTT_BROKER = "mqtt.eclipseprojects.io" # 替換為你的 MQTT Broker 地址 MQTT_PORT = 1883 # MQTT 埠號(默認為 1883) MQTT_TOPIC_SUB = "ESP32CAM_hpcLab/esp32cam/pic" # 要訂閱的主題 MQTT_TOPIC_PUB = "ESP32CAM_hpcLab/esp32cam/detect" # 發佈檢測結果的主題 mqtt_client = mqtt.Client() FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import select_device, time_sync @torch.no_grad() def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) if is_url and is_file: source = check_file(source) # download # Directories #save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run #(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Fixed Directory save_dir = Path(project) / name # 固定輸出到同一資料夾 (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # 建立資料夾 # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup dt, seen = [0.0, 0.0, 0.0], 0 t=0 for path, im, im0s, vid_cap, s in dataset: t1 = time_sync() im = torch.from_numpy(im).to(device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count #s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path #save_path = str(save_dir / p.name) # im.jpg save_path = str(save_dir / "detect.jpg") # 統一命名為 detect.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt #s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): s += f"{names[int(c)]} " # add to string mqtt_message=f"{names[int(c)]}" if (mqtt_message != "backgrounds"): mqtt_client.publish(MQTT_TOPIC_PUB, mqtt_message) # 發送訊息到 MQTT print("辨識結果 :",mqtt_message) # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(f'{txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Stream results im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) #LOGGER.info(f'{s}')#印出 重製s # Print results #t = tuple(x / seen * 1E3 for x in dt) # speeds per image #LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) #if save_txt or save_img: # s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' # LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") # #print(s) # #r = requests.post('http://192.168.1.143/test?yolo='+s) #if update: # strip_optimizer(weights) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'D:/test/yolo-detect/last.pt', help='model path(s)') parser.add_argument('--source', type=str, default=ROOT / 'D:/test/yolo-detect/img/received_image.jpg', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--data', type=str, default=ROOT / 'D:/test/yolo-detect/mydata.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'img', help='save results to project/name') parser.add_argument('--name', default='', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand # print_args(vars(opt)) 啟動參數 return opt # MQTT 回調函數 def on_connect(client, userdata, flags, rc): if rc == 0: print("MQTT 成功連線") mqtt_client.subscribe(MQTT_TOPIC_SUB) print(f"訂閱主題: {MQTT_TOPIC_SUB}") else: print(f"連線失敗,錯誤碼: {rc}") def on_message(client, userdata, msg): print(f"接收到 MQTT 訊息,主題: {msg.topic}") try: # 假設接收到的是圖片二進位數據 output_file = "D:/test/yolo-detect/img/received_image.jpg" # 儲存圖片的檔案名稱 with open(output_file, "wb") as file: file.write(msg.payload) print(f"圖片已保存為 {output_file}") # 執行 YOLOv5 檢測 print(f"開始執行 YOLOv5 檢測,圖片路徑: {output_file}") run(**vars(opt)) except Exception as e: print(f"處理訊息時發生錯誤: {e}") def main(opt): mqtt_client.on_connect = on_connect mqtt_client.on_message = on_message mqtt_client.connect(MQTT_BROKER, MQTT_PORT, 60) print("啟動 MQTT 客戶端...") mqtt_client.loop_forever() check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt) ``` ![image](https://hackmd.io/_uploads/SkBkbbzmJl.png) ![image](https://hackmd.io/_uploads/HkAjjqaf1g.png)