# Mathematics in Kalman Filter ###### tags: `tutorial` `software` `electrical_system` `NTURT` ## Linear Algebra ### Eigen Value Decomposition #### How to Calculate: - $A \vec{u} = \lambda I \vec{u}$ - $(A - \lambda I) \vec{u} = 0$ - $det(A- \lambda I) = 0$ - Then solve the characteristic equation to get $\lambda$ #### From the definition of eigenvalue to the decomposition - $\pmatrix{A\vec{u_{1}}\ A\vec{u_{2}}\ \ldots\ A\vec{u_{n}}}= \pmatrix{\lambda_{1}\vec{u_{1}}&\lambda_{1}\vec{u_{2}}&\ldots&\lambda_{n}\vec{u_{n}}}$ - $A\pmatrix{\vec{u_{1}}\ \vec{u_{2}}\ \ldots\ \vec{u_{n}}}= \pmatrix{\vec{u_{1}}\ \vec{u_{2}}\ \ldots\ \vec{u_{n}}} \pmatrix{\lambda_{1}&0&\cdots&0\\ 0&\lambda_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\lambda_{n}}$ - let $\pmatrix{\vec{u_{1}}\ \vec{u_{2}}\ldots\vec{u_{n}}}=\bar{U};\ \pmatrix{\lambda_{1}&0&\cdots&0\\ 0&\lambda_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\lambda_{n}}= \bar{D}$ - $A\bar{U}=\bar{U}\bar{D}$ - $A=\bar{U}\bar{D}\bar{U}^T$ where $\bar{U}^T=\bar{U}^{-1}$ #### Problems - How about A $\in R^{m*n}$ where $m \not= n$? - How about A being not full rank? ### Singular Value Decomposition #### Make Something Possible to Decompose - Maybe we can't eigenvalue decompose A, but we can definitely decompose $AA^T$ - Suppose $AA^T = UDU^T$ - We can make it $UDU^T = (U\Sigma V^T)(U\Sigma V^T)^T$, where $V$ and $\Sigma$ satisfy $VV^T=I$ and $\Sigma \Sigma^T = D$ - $\Sigma = \pmatrix{\bar{S}\\\bar{0}}$ or $\Sigma = \pmatrix{\bar{S}&\bar{0}}$ - $S = \pmatrix{\sigma_{1}&0&\cdots&0\\ 0&\sigma_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\sigma_{n}}$, where $\sigma$ is a non-negative square root of the eigenvalue of $AA^T$, called **Singular Value** - We can let $A = U\Sigma V^T$ due to above property, this is **Singular Value Decomposition (SVD)** - The pic of SVD: ![](https://i.imgur.com/7u4Jl6m.png) - The blue dots are singular value (eigenvalues of $AA^T$). #### Four subspace of a matrix - Suppose $A = U\Sigma V^T$ - So that $AV = U\Sigma$ - **Think about it for a while, and figur out the following problems.** - Suppose that A $\in R^{m*n}$ and m>n: - If $\vec{y}=A\vec{x}$, what is the dimension of three of them? - Furthermore, what's the dimension of U, $\Sigma$ and V? - How A maps a vector from one space to another? - If $\vec{x}$ is a n*1 vector: - Does $\vec{x}$ in the space spanned by $V$? - If yes, is $\vec{x}$ spanned by columns or rolls in $V$? - Could $A\vec{x}$ be $\vec{0}$? - If yes, those $\vec{x}$ can be spanned by which rolls in V? - How about those $\vec{x}$ that make $A\vec{x} \not= \vec{0}$? Which rolls in V can span $\vec{x}$? - We knew that if $A\vec{x}=\vec{0}$, $\vec{x}$ is called in the null space of A; otherwise, it's called in the rank space of A. - How can we find the nullspace of $A$? - How can we find the rankspace of $A$? - How can we find the nullspace of $A^T$? - How can we find the rankspace of $A^T$? #### Seudo-Inverse of SVD - If $\vec{y}=A\vec{x}$, how can we find $\vec{x}$? We can use seudo-inverse incase $A$ is not a m*m matrix. - The seudo-inverse of $A$ is $A^+=(U\Sigma V^T)^+=V\Sigma^+U^T$ - $\Sigma = \pmatrix{\bar{S}\\\bar{0}}\implies\Sigma^+ = \pmatrix{\bar{S}^+&\bar{0}}$ or $\Sigma = \pmatrix{\bar{S}&\bar{0}}\implies\Sigma^+ = \pmatrix{\bar{S}^+\\\bar{0}}$ - $S^+ = \pmatrix{1/\sigma_{1}&0&\cdots&0\\ 0&1/\sigma_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1/\sigma_{n}}$ - can $\sigma$ be 0 here? #### Note - When the elements in the matrix are not real, the transpose in $U$ and $V$ will become conjugate transpose, i.e. $A^+=\bar{V}\Sigma\bar{U}^T$. - When we expect $A\vec{x}$ very close to 0 but not 0, what will we do to find x? We may choose the v related to the smallest singular value. - If you have hard time reading this section and answer all the questions, you may refer to [Four Fundamental Subspaces of Linear Algebra](https://blogs.mathworks.com/cleve/2016/11/28/four-fundamental-subspaces-of-linear-algebra/) ## Probability ### Gauss Distribution ![](https://i.imgur.com/jSTzbOi.png) ### Markov Process - We treat a sequence ${x_{0},x_{1},\ldots,x_{n}}$ as a process usually when $x_{n} = f(x_{0},x_{1},\ldots,x_{n-1})$ - Therefore we can expand this sequence iteratively, and produce the sequence like a discrete signal. - When $x_{n} = f(x_{n-1})$ only, we can say it's a Markov Process. - For further information, please refer to : [馬可夫鏈](https://zh.wikipedia.org/zh-tw/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E9%93%BE) ### Bayes Theorem ![](https://i.imgur.com/6bVNz08.png)