# Global and Local Mixture Consistency Cumulative Learning for Long-tailed Visual Recognitions
作者:Fei Du, Peng Yang, Qi Jia, Fengtao Nan, Xiaoting Chen, Yun Yang
論文連結:https://openaccess.thecvf.com/content/CVPR2023/papers/Du_Global_and_Local_Mixture_Consistency_Cumulative_Learning_for_Long-Tailed_Visual_CVPR_2023_paper.pdf
整理by: [chewei](https://hackmd.io/@WTuIbJANSB26DiAX-WL4Sg)
## 主要貢獻:
* One-Stage training strategy : GLMC
* 一個Loss: Global and Local mixture consistency Loss
* 一個逐Epoch累計變化的Loss 參數
$\rightarrow$ 主要圍繞在Loss改進
## 整體架構
* 首先以[1] BBN方式做出inverse sampler 使head->tail和tail->head 的sample相同,目的是為了要增強 Tail Class 的精確度:
**Sample Function:**
$$
P_i=\frac{w_i}{\sum^c_{j=1}w_j}, \\
w_i=\frac{N_{max}}{N_i}
$$

* 接下來對此兩張照片一起做Global Mixture(MixUp),以及Local Mixture(CutMix)
**Global Mixture Function:**
$$
\begin{align*}
& \lambda~Beta(\beta,\beta) \\
& \tilde{x}_g =\lambda x_i + (1-\lambda)x_j, \\
& \tilde{p}_g = \lambda p_i + (1 - \lambda)p_j.
\end{align*}
$$
**Local Mixture Function:**
$$
\begin{align*}
& \tilde{x}_l=\text{M}\odot x_i + (\text{1} -\text{M})\odot x_j. \\
\text{Bounding Box :} \\
& B=(r_x,r_y,r_w,r_h) \\
& r_x ~ Uniform(0,W),r_w = W\sqrt{1-\lambda} \\
& r_y ~ Uniform(0,H),r_h=H\sqrt{1-\lambda}
\end{align*}
$$

* 接著放進Model(ResNet32)後分別算出
* $L_{CE}(C(\tilde{x}),\tilde{y})$
* $L_{cb}(C(\tilde{x}),\tilde{w},\tilde{y})$
* $L_{sim}=sim(u_g,sg(h_l))+sim(u_l,sg(h_g))$
##### **$L_{CE}$爲CrossEntropy Loss:**
$$
L_{EC} =-\frac{1}{2N}\sum_{i=1}^{N}(\tilde{p}_{g}^{i}(logf(\tilde{x}_{g}^{i}))+\tilde{p}_{l}^{i}(logf(\tilde{x}_{l}^{i})))
$$
##### **$L_{CE}$爲Rebalanced Loss:**
$$
L_{cb} =-\frac{1}{2N}\sum_{i=1}^{N}\tilde{w}^i(\tilde{p}_{g}^{i}(logf(\tilde{x}_{g}^{i}))+\tilde{p}_{l}^{i}(logf(\tilde{x}_{l}^{i})))
$$
##### **$L_{sim}$爲[2]SimSiam 所提出之 SimSiam Loss:**
$$
L_{sim}=sim(u_g,sg(h_l))+sim(u_l,sg(h_g))
$$
:::success
結合方式爲:
$$
L_{total}= \alpha L_{CE}+ (1-\alpha)L_{cb} + \gamma L_{sim}
$$
$\gamma$經過消融實驗後設定爲10
$\alpha$計算方式爲:
$$
\alpha = 1-(\frac{T}{T_{max}})^2
$$
:::

---
整體架構圖:

Loss架構圖:

## Related Work
stop-gradient
simulate cosine
## 參考資料
[1] BBN
[2] siamsim
[BBN筆記](https://medium.com/@_Xing_Chen_/bbn-bilateral-branch-network-with-cumulative-learning-for-long-tailed-visual-recognition-%E8%AB%96%E6%96%87%E8%A9%B3%E7%B4%B0%E8%A7%A3%E8%AE%80-2491805342e4)