*Multimodal Federated Learning: A Survey* https://www.mdpi.com/1424-8220/23/15/6986 Multimodal Federated Learning(MFL),傳統的FL訓練data sample只有一種modality(型態。例如: image vs text)。在MLF中所要處理的問題是有多modality。(<font color="#f00">vs multi-task FL 則是system中一次有多個model owner同時訓練</font>) CONTRIBUTION: 1. 對現有modality data FL依據進行分類 2. 介紹多個不同情境的dataset(看paper) 3. 此領域非常新很少人研究 PROBLEM: * modality heterogeneity challenge, 主要包含: 1. significant differences in model structures 2. significant differences in local tasks 3. significant differences in parameter spaces among clients(可以想像image與text的CNN會長得不一樣) ALGORITHM OUTLINE: * 大致上是由unimodel的FedAvg改良而來。其中可能改良的地方是在local計算loss時,可以多加入weigh於不同modality上(例如在更著重於image便是的task中,可以調高image modality的比重減少text的比重) 1. 紅色-不同modality的weight 2. 綠色-不同modality所對應的不同model,output維predict label,y-label * **loss function** ![image](https://hackmd.io/_uploads/S1IeQGjVp.png) * **aggregate** ![image](https://hackmd.io/_uploads/SkDGXGi4p.png) CATEGORY of MFL * 使用每個clinet之間lable space、feature space以及modality space分布方式來區分成四種 * the more congruent modality combinations the clients hold, the less heterogeneous the modality distribution of the system. 1. Congruent MFL: all the clients hold the SAME modality set * horizontal settings (traditional unimodal FL) ⇨ SAME AS TRADITIONAL FL 2. Incongruent MFL: the clients hold the DIFFERENT modality set * Vertical (traditional unimodal FL) ⇨ SAME AS TRADITIONAL FL * Transfer (traditional unimodal FL) ⇨ SAME AS TRADITIONAL FL * hybrid MFL ⇨ NEW!!! ![image](https://hackmd.io/_uploads/rkZEVzsN6.png) 1. horizontal MFL ![image](https://hackmd.io/_uploads/HJQU4zsNa.png) 2. Vertical MFL ![image](https://hackmd.io/_uploads/Sktd4MsVp.png) 3. Transfer MFL ![image](https://hackmd.io/_uploads/S195NGiN6.png) 4. hybrid MFL ![image](https://hackmd.io/_uploads/Hk_hEGjVT.png)