###### tags: `Macine learning` # Evaluation Matrix[Accurecy and error mesures] - Evaluation matrix explains performence of matrix - 3 types of evaluation matrix 1. Jaccard Index 2. F.score 3. Log loss - Best wat to look the accuracy of classifier is to look at the "confussion matrix" - confussion matrix shows Actual/true value in row and column shows predicted values - based on count of each section we can caliculate Precision and Recall ## Actual value ![](https://i.imgur.com/ue9HXJz.jpg) - Precision is measure of accurecy - $precision = \frac{True \ positive}{Total \ number \ of \ predicted \ +ve}= \frac{True \ positive}{TP+FP}$ - Recall is measure of actual +ve rate - $Recall = \frac{True \ positive}{True \ positive+False\ Negative} =\frac{TP}{Actual +ve}$ ## Accurecy , Precision, Recall(sencitivity), Specificity $Accuracy = \frac{TP+TN}{TP+FP+FN+FN}= \frac{All\ corctly\ predicted}{All\ sanples}$ $Precision = \frac{TP}{(TP+FP)}= \frac{True \ positive}{True \ positive+False\ Negative}= Tripple \ p \ rule$ $Recall(sencitvity) = \frac{TP}{(TP+FN)}$ $Recall(sencitvity) = \frac{TP}{(TP+FN)}= \frac{TN}{(TN+FP)}$