## Kvadratisk funktion i to variable $$ f(x) = Ax^2 + Cy^2 + Dx + Ey + F $$ Sortér udtryk. $$ f(x) = Ax^2 + Dx + Cy^2 + Ey + F $$ Faktoriser de sorterede udtryk. $$ f(x) = A(x^2 + \frac{D}{A}x) + C(y^2 + \frac{E}{C}y) + F $$ Kvadrat komplettering af udtryk i parenteserne. $$ f(x) = A(x^2 + \frac{D}{A}x + (\frac{D}{2A})^2 - (\frac{D}{2A})^2) + C(y^2 + \frac{E}{C}y + (\frac{E}{2C})^2 - (\frac{E}{2C})^2) + F $$ Forsimpling af udvidede kvadrater, v.h.a. kvadratsætning. $$ f(x) = A((x + \frac{D}{2A})^2 - (\frac{D}{2A})^2) + C((y + \frac{E}{2C})^2 - (\frac{E}{2C})^2) + F $$ Indholdet af parentesen forkortes, ved ekskludering af andet led, der rykkes ud. (Nu ganget med $A$) $$ f(x) = A(x + \frac{D}{2A})^2 + C(y + \frac{E}{2C})^2 + F - {4C^2} - A(\frac{D}{2A})^2 - C(\frac{E}{2C})^2 $$ Parenteser ophæves. $$ f(x) = A(x + \frac{D}{2A})^2 + C(y + \frac{E}{2C}) + F - A\frac{D^2}{4A^2} - C\frac{E^2}{4C^2} $$ Koefficienter ganges på brøkerne. $$ f(x) = A(x + \frac{D}{2A})^2 + C(y + \frac{E}{2C}) + F - \frac{D^2}{4A} - \frac{E^2}{4C} $$ Fortegn vendes om og bagerste led denoteres $M^*$. $$ f(x) = A(x - (-\frac{D}{2A}))^2 + C(y - (-\frac{E}{2C}))^2 + M^* $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up