# Week 1&2 ## Problem 3 (a) | $p$ | $q$ | $p \rightarrow q$ | $p \land (p \rightarrow q)$ | $(p \land (p \rightarrow q)) \rightarrow q$ | | --- | --- | ----------------- | --------------------------- | ------------------------------------------- | | T | T | T | T | T | | T | F | F | F | T | | F | T | T | F | T | | F | F | T | F | T | $(p \land (p \rightarrow q)) \rightarrow q$ is True no matter what value $p$ and $q$ is, so it is a tautology. \(c\) | $p$ | $q$ | $\sim p$ | $\sim q$ | $p \leftrightarrow q$ | $\sim p \leftrightarrow \sim q$ | | --- | --- | -------- | -------- | --------------------- | ------------------------------- | | T | T | F | F | T | T | | T | F | F | T | F | F | | F | T | T | F | F | F | | F | F | T | T | T | T | $p \leftrightarrow q$ and $\sim p \leftrightarrow \sim q$ are logically equivalent since their truth values are the same for any logical value combinations between $p$ and $q$. ## Problem 16 (a) sum 23 ~ 899 (4 *i^2 + 6i + 3) = sum 1 ~ 899 (4 *i^2 + 6i + 3) - sum 1 ~ 22 (4 *i^2 + 6i + 3) = 4 * 899 * 900 * (899 * 2 + 1) / 6 + 6 * 899 * (899 + 1) / 2 sum 1 ~ n (i) = n * (n + 1) / 2 sum 1 ~ n (i^2) = n * (n + 1) * (2n + 1) / 6 1^2 +2^2 + 3 ^ 2 = 14 = 3 * 4 * 7 / 6 $ \begin{align*} &(\lnot q \land (p \rightarrow q)) \rightarrow \lnot p\\ &\equiv (\lnot q \land (\lnot p \lor q)) \rightarrow \lnot p\\ &\equiv \lnot(\lnot q \land (\lnot p \lor q)) \lor \lnot p\\ &\equiv (q \lor \lnot (\lnot p \lor q)) \lor \lnot p\\ &\equiv (q \lor (p \land \lnot q)) \lor \lnot p\\ &\equiv ((q \lor p) \land (q \lor \lnot q)) \lor \lnot p\\ &\equiv ((q \lor p) \land t) \lor \lnot p\\ &\equiv (q \lor p) \lor \lnot p\\ &\equiv \lnot p \lor (q \lor p)\\ &\equiv \lnot p \lor (p \lor q)\\ &\equiv (\lnot p \lor p) \lor q\\ &\equiv (p \lor \lnot p) \lor q\\ &\equiv t \lor q\\ &\equiv q \lor t\\ &\equiv t \end{align*} $
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up