# 3.209 Propositional Logic Exercise - Pham Phan Nhan ## Question 1 a) p = {1, 3, 5, 7, 9, 11, 13, 15} q = {2, 3, 5, 7, 11, 13} r = {1, 2, 3, 4, 5, 6, 7} Truth set of $p∧q$ is {2, 3, 5, 7, 11, 13} Truth set of $p\oplus q$ is {1, 2, 9, 15} | p | q | r | p → q | r → q | |:-:|:-:|:-:|:--------:|:--------:| | F | F | F | T | T | | F | F | T | T | F | | F | T | F | T | T | | F | T | T | T | T | | T | F | F | F | T | | T | F | T | F | F | | T | T | F | T | T | | T | T | T | T | T | Truth set of $p→q$ is {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14} Truth set of $r→q$ is {2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15} b) - 'n is neither odd nor is a prime number': ~p ∧ ~q - 'if n is odd and n less than 8 then n is a prime number': (p ∧ r) → q - 'n is a prime number only if n is odd': q → p - 'n is a prime number if n is odd': p → q c) The contrapositive of q→p is ~p → ~q or **if n is not an odd number, then n is not a prime number**. ## Question 2 Prove that: $(p→q)∧p=p∧q$ Using the the truth table, $p→q = \displaystyle \neg p \lor q$ | p | q | $p \rightarrow q$ | **$\displaystyle \neg p \lor q$** | |:-:|:-:|:--------:|:-----------------------------:| | F | F | T | T | | F | T | T | T | | T | F | F | F | | T | T | T | T | Thus, $$(p→q)∧p = (\displaystyle \neg p \lor q) ∧ p $$ $$ = (\displaystyle \neg p ∧ p) \lor (q \land p) $$ $$ = F \lor(q \land p) $$ $$ = q \land p$$ $$ = p \land q$$