# 3.209 Propositional Logic Exercise - Pham Phan Nhan
## Question 1
a)
p = {1, 3, 5, 7, 9, 11, 13, 15}
q = {2, 3, 5, 7, 11, 13}
r = {1, 2, 3, 4, 5, 6, 7}
Truth set of $p∧q$ is {2, 3, 5, 7, 11, 13}
Truth set of $p\oplus q$ is {1, 2, 9, 15}
| p | q | r | p → q | r → q |
|:-:|:-:|:-:|:--------:|:--------:|
| F | F | F | T | T |
| F | F | T | T | F |
| F | T | F | T | T |
| F | T | T | T | T |
| T | F | F | F | T |
| T | F | T | F | F |
| T | T | F | T | T |
| T | T | T | T | T |
Truth set of $p→q$ is {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14}
Truth set of $r→q$ is {2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15}
b)
- 'n is neither odd nor is a prime number': ~p ∧ ~q
- 'if n is odd and n less than 8 then n is a prime number': (p ∧ r) → q
- 'n is a prime number only if n is odd': q → p
- 'n is a prime number if n is odd': p → q
c) The contrapositive of q→p is ~p → ~q or **if n is not an odd number, then n is not a prime number**.
## Question 2
Prove that: $(p→q)∧p=p∧q$
Using the the truth table, $p→q = \displaystyle \neg p \lor q$
| p | q | $p \rightarrow q$ | **$\displaystyle \neg p \lor q$** |
|:-:|:-:|:--------:|:-----------------------------:|
| F | F | T | T |
| F | T | T | T |
| T | F | F | F |
| T | T | T | T |
Thus,
$$(p→q)∧p = (\displaystyle \neg p \lor q) ∧ p $$
$$ = (\displaystyle \neg p ∧ p) \lor (q \land p) $$
$$ = F \lor(q \land p) $$
$$ = q \land p$$
$$ = p \land q$$