Nonlinear System === [TOC] # stable,unstable,asymptotically stable ## stable 起始點小於一個範圍 $\delta$ 之後的時間都不會超過範圍 $\epsilon$ ## unstable 不stable ## asymptotically stable 起始點小於一個範圍 $\delta$ 一段時間後誤差值會趨近於0 --- # Definition ## function Scalar function: V(x~1~,x~2~) = x~1~^T^x~1~+x~2~^T^x~2~ $\in R$ Vector function: V(x~1~,x~2~) = x~1~^T^x~1~+x~2~^T^x~2~ $\in R^2$ ## autonomous system , non autonomous system ### autononmous system: - f(x) - doesn't explicitly depend on time ### non-autonomous system: - f(x(t)) - explicitly depends on time ## definite ### P.D.(positive definite) 函數$\ V(0) = 0 , V(x)>0 \ for \ x \neq 0 \\ Ex: \ V(x) = x^2,\\ Ex: \ V(x_1,x_2)=x_1^2+2x_2^2$ ### P.S.D.(positive Semidefinite) 函數$\ V(0) = 0 , V(x) \geq 0 \ for \ x \neq 0 \\ Ex: \ V(x_1,x_2) = x_1^2,\\ Ex: \ V(x_1,x_2)=(x_1^2-4x_2^2)^2$ ### N.D.(negative definite) 函數$\ V(0) = 0 , V(x)>0 \ for \ x \neq 0 \\ Ex: \ V(x) = -x^2,\\ Ex: \ V(x_1,x_2)=-x_1^2-2x_2^2$ ### N.S.D.(negative Semidefinite) 函數$\ V(0) = 0 , V(x) \leq 0 \ for \ x \neq 0 \\ Ex: \ V(x_1,x_2) = -x_1^2,\\ Ex: \ V(x_1,x_2)=-(x_1^2-4x_2^2)^2$ ## Level set: $V(x_1,x_2)=x_1^2+x_2^2$ for 1. $V=1,\ x_1^2+x_2^2, \ S_1=\{x_1 \in \mathbb{R} , x_2 \in \mathbb{R} \ | x_1^2+_2^2=1\}$ 2. $V=2,\ x_1^2+x_2^2, \ S_1=\{x_1 \in \mathbb{R} , x_2 \in \mathbb{R}\ |x_1^2+_2^2=2\}$ ## class K $K$:嚴格遞增 $K_\infty$嚴格遞增且會跑到無窮大 KL: 1. $\beta(r,s)$ for each fixed s , the mapping $\beta(r,s)$ belongs to class K 2. $\beta(r,s)$ for each fixed r , the mapping $\beta(r,s)$ is decreasing # Lyapunov theory ![](https://i.imgur.com/smxMfUH.jpg) ![](https://i.imgur.com/W12w5YP.png) ## global , semiglobal , and local stability - globally stable: for all initial conditions , the system is stable - semi-globally stable: for all initial conditions, the system is stable(provided that gains are selected appropriately) - locally stable: for some initial conditions ,the system stable # radially unbounded 任何 x norm 為無限大 V(x) 都會到無限大 # nonautonomous systems f(x,t) P.S.D : >= 0 P.D: lowerbounded decrescent: uperbounded radially unbounded: 不管t為何 , 任何 x norm 為無限大 V(x) 都會到無限大 # LEMMAS ## lemma 4.3 $\alpha_1 \leq V(x) \leq \alpha_2(x)$ -> V(x) is radially unbounded if $\alpha_1 \ and \ \alpha_2 \ are \ K_\infty$ ## lemma 4.5 eq.pt.x = 0 of $\dot{x} = f(x,t)$ is U.A.S. iff there exist a class K~L~ function $\beta$ and a positive constant c, independent of t~0~ , such that ![](https://i.imgur.com/zdaCIeP.png) # Theorem(From KAHLIL's book) ## Theorem 4.8 Let x = 0 be an eq. pt. for $\dot{x}=f(x,t)$ and $D \subset \mathbb{R}^n$ be a domain containing x = 0. Let $V[0,\infty)xD \rightarrow \mathbb{R}$ be a continuously differentiable finctuon such that $$ W_1(x) \leq V(t,x \leq W_2(x))\\ \begin{equation} \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x)\leq 0 \end{equation}\ (N.S.D) $$ $\forall \geq 0$ and $\forall x\in D$,where W~1~(x) and W~2~(x) are continuous positive definite functions on D. Then,x=0 is ==uniformly stable== ## Theorem 4.9 Let x = 0 be an eq. pt. for $\dot{x}=f(x,t)$ and $D \subset \mathbb{R}^n$ be a domain containing x = 0. Let $V[0,\infty)xD \rightarrow \mathbb{R}$ be a continuously differentiable finctuon such that $$ W_1(x) \leq V(t,x \leq W_2(x))\\ \begin{equation} \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x)\leq -W_3(x) \end{equation}\ $$ $\forall \geq 0$ and $\forall x\in D$,where W~1~(x) , W~2~(x) , and W~3~(x) are continuous positive definite functions on D. Then,x=0 is ==uniformly asymptotically stable== # UUB (uniformly ultimately bounded) ## uniformly bounded x(t~0~)<= a => x(t)<= B ![](https://i.imgur.com/DQWuhNZ.jpg =400x) ## UUB x(t~0~)<= a => x(t)<= B , for all t > t~0~+T ![](https://i.imgur.com/DE6uSDK.jpg =400x) # Barballat's lemma - Lasalle's Theorem is only designed for autonomous system - For nonautonomous system,one should apply Barbalat's Lemma ## integral form integral form: if f(t) is uniformly continuous (U.C.) and if $lim_{t \rightarrow \infty}\int_0^tf(\tau)$ exist and is finite then $lim_{t \rightarrow \infty}f(t)=0$ non-integral form: if $\dot{f}$ is U.C. and $lim_{t \rightarrow \infty}f(t)$ exists and is finite,then $lim_{t \rightarrow \infty}\dot{f}(t)=0$ #### L2 Norm * $\begin{Vmatrix}f\end{Vmatrix}_p \overset{\Delta}{=} (\int_0^t\begin{vmatrix}f(\tau)\end{vmatrix}^p\mathrm{d}\tau)^{{1 \over p}}$ * $\begin{Vmatrix}f\end{Vmatrix}_2 \overset{\Delta}{=} \sqrt{\int_0^tf^2(\tau)\mathrm{d}\tau}$ * if $\begin{Vmatrix}f\end{Vmatrix}_2 \in L_\infty \Rightarrow f \in L_2$ * $\begin{Vmatrix}f\end{Vmatrix}_\infty \overset{\Delta}{=} sup_t(f(t))$ # Feedback linearlization