###### tags: `論文摘要` `機器學習` # Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization * 時間: 2017 * Conference: Journal of Electronic Science and Technology * Link: https://www.sciencedirect.com/science/article/pii/S1674862X19300047 * MLA: Wu, Jia, et al. "Hyperparameter optimization for machine learning models based on Bayesian optimization." Journal of Electronic Science and Technology 17.1 (2019): 26-40. ## 概論 使用Bayesian optimization對Gaussian process近似的模型做超參數更新。 ## 方法 已知$x$為我們需要調整的超參數,首先預先假設該模型f(x)符合高斯分布,因此可以透過高斯過程近似該模型: $$f(x)\sim \text{GP}(m(x), k(x, x'))$$ 其中$k(x, x')$為covariance function: $$k(x_i, x_j)=\exp(-\frac{1}{2}\parallel x_i-x_j \parallel^2)$$ 接著可以依$x$與$f(x)$定義出數據集$D$,寫作下式(假設有$t$筆超參數) $$D_{1:t}=\{x_n, f_n\}^{t}_{n=1}\\f_n=f(x_n)$$ 由此便能推得$f_{t+1}$同樣也遵守高斯分布,即: $$ \left [ \begin{array}{cc} f_{1:t} \\ f_{t+1} \end{array} \right ] \sim N( \left [ \begin{array}{cc} K & k \\ k^T & k(x_{t+1}, x_{t+1}) \end{array} \right ] )\\f_{1:t}=[f_1, f_2, ..., f_t]^T\\ \textbf{k}=[k(x_{t+1}, x_1)k(x_{t+1}, x_2)...k(x_{t+1}, x_t)] $$ 且mean function與covariance function分別為: $$\mu_{t+1}(x_{t+1})=\textbf{k}^T\textbf{K}^{-1}\textbf{f}_{1:t}\\\sigma^2_{t+1}=-\textbf{k}^T\textbf{K}^{-1}\textbf{k}+k(x_{t+1}, x_{t+1})$$ 至此高斯近似模型就定義完了。 下一步是選用acquisition function去優化上述近似模型: $$x^+=\mathop{\arg\min}\limits_{x\in A}u(x\mid D)$$ 等效於: $$x^+=\mathop{\arg\min}\limits_{x_i\in x_{1:t}}f(x_i)$$ 常見的acquisition function有下列兩種: * Probability of improvement (PI) * Expected improvement (EI)