###### tags: `論文摘要` `ensemble` `LFP` # Stacked Recurrent Neural Network for Decoding of Reaching Movement Using Local Field Potentials and Single-Unit Spikes * 時間: 2017 * Conference: IEEE EMBS Conference on Neural Engineering * Link: https://ieeexplore.ieee.org/iel7/8003578/8008262/08008440.pdf * MLA: Fathi, Yaser, and Abbas Erfanian. "Stacked recurrent neural network for decoding of reaching movement using local field potentials and single-unit spikes." 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. ## 概論 single unit activities (SUAs)具有良好的空間與時間特徵,故能提高BCI解碼表現,然而相較LFP不利長期解碼;故而如何兼取兩者特徵為該篇重點。**CTO** 僅有少篇文獻採取該作法。 ## 方法 採用ensemble learning的概念將兩個不同decoder進行堆疊 (stack),以進行權衡。 另有比較多種堆疊的方式。 ![](https://i.imgur.com/USrkP7W.png) LFP特徵方面選用LMP與5個頻帶(0–4, 7–20, 70–115, 130-200, 200–300)的特徵進行解碼。 LMP方面採256ms的moving average進行。 LFP時頻則於每個data window取256ms,且overlap為156ms的Hanning window進行。 firing rates (FRs)則以100ms為一個time bin,並取moving Gaussian window (256ms)且overlap為156ms用以平滑化FRs。