# GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks ###### tags: `PIM` `Onur Mutlu` `ASPLOS '18` ###### papers: [link](https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf) ###### slides: [link](https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-talk.pptx) ## 0. ABSTRACT * data movement 是 consumer-device 能量消耗的主要來源,希望能透過 PIM 技巧減少這方面的overhead * 分析以下 workloads: * Chrome web browser * TensorFlow mobile * video plaback * video capture * 分析結果發現透過 PIM 技巧可以減少整體系統耗能 (平均 55.4%) 及執行時間 (平均 54.2%) ## 1. INTRODUCTION * ## 2. BACKGROUND ## 3. ANALYZING AND MITIGATING DATA MOVEMENT ## 4. CHROME WEB BROWSER ## 5. TENSORFLOW MOBILE ## 6. VIDEO PLAYBACK ## 7. VIDEO CAPTURE ## 8. SYSTEM INTEGRATION ## 9. METHODOLOGY ## 10. EVALUATION ## 11. OTHER RELATED WORK ## 12. CONCLUSION