# Crypto Exam 1 $\text{(3)}$ \begin{align} x^{67} &\equiv 35 \text{ (mod 127)} \end{align} \begin{align} 67d &\equiv 1 \text{ (mod 126)} \end{align} \begin{align} 126=67(1)+59 \end{align} \begin{align} 67=59(1)+8 \end{align} \begin{align} 59=8(7)+3 \end{align} \begin{align} 8=3(2)+2 \end{align} \begin{align} 3=2(1)+1 \end{align} \begin{align} 2=1(2)+0 \end{align} ||| 1 | 1 | 7 | 2 | 1 | 2 | |:-----:|-----|-|-|-|-|-|-| |0|1|1|2|15|32|47|126| |1|0|1|1|8|17|25|67| \begin{align} 126(25) + 67(-47)=1 \end{align} \begin{align} -47\,\, \text{( mod 126)}=79 \end{align} \begin{align} 79_{10}= 1001111_{2} \end{align} \begin{align} x= 35^{79} \text{(mod 127)} \end{align} \begin{align} 35\cdot82\cdot120\cdot49\cdot35 \,\,\ \text{(mod 127)}= 115 \end{align} $\text{(4)}$ \begin{align} e=91,\,\,p=97,\,\, q=101 \end{align} $\,\,\,\,\,\ \text{(a)}$ \begin{align} (p-1)(q-1)=9600 \end{align} \begin{align} gcd((p-1)(q-1),e) \end{align} \begin{align} gcd((9600,91)=1 \end{align} \begin{align} 9600=91(105)+45 \end{align} \begin{align} 91=45(2)+1 \end{align} \begin{align} 45=1(45)+0 \end{align} $\text{This shows that this problem will work since the gcd is 1. }$ $\,\,\,\,\, \text{(b)}$ $\,\,\,\,\,\,\,\,\,\, N=pq=9797$ $\,\,\,\,\,\,\,\,\,\, m=2153$ $\,\,\,\,\,\,\,\,\,\,c=m^{e} \text{(mod N)}$ $\text{c is the encrypted message that is sent.}$ \begin{align} c=2153^{91} \text{(mod 9797)} \end{align} \begin{align} 91_{10}=1011011_{2} \end{align} \begin{align} 2153\cdot1428\cdot3470\cdot387\cdot2620 \text{(mod 9797)}=4816 \text{(mod 9797)} \end{align} \begin{align} c=4816 \end{align} $\,\,\,\,\, \text{(c)}$ $\,\,\,\,\,\,\,\,\,\, de=1\,\,\text{mod}\,\,\dfrac{(p-1)(q-1)}{ gcd(p-1)(q-1)}$ \begin{align} gcd((96,100)=4 \end{align} \begin{align} 91d=1 \text{mod 2400} \end{align} \begin{align} 2400=91(26)+34 \end{align} \begin{align} 91=34(2)+23 \end{align} \begin{align} 34=23(1)+11 \end{align} \begin{align} 23=11(2)+1 \end{align} \begin{align} 11=1(11)+0 \end{align} \begin{align} gcd(2400,91)=1 \end{align} ||| 26 | 2 | 1 | 2 | 11 | |:-----:|-----|-|-|-|-|-| |0|1|26|53|79|211|2400| |1|0|1|2|3|8|91| \begin{align} 91(211)+2400(-8)=1 \end{align} \begin{align} d=211 \end{align} $\,\,\,\,\, \text{(d)}$ $\,\,\,\,\,\,\,\,\,\, m=c^d\,\, \text{mod N}$ \begin{align} 4816^{211} \text{mod 9797} \end{align} \begin{align} 211_{10}=11010011_{2} \end{align} \begin{align} 4816\cdot4357\cdot387\cdot2620\cdot6500 \,\,\text{mod 9797}= 2153 \end{align}