Math 182 Miniproject 1 Partial Fractions.md --- Math 182 Miniproject 1 Partial Fractions === **Overview:** In this project we explore more advanced partial fraction decomposition than we covered during class. **Prerequisites:** Section 5.5 of _Active Calculus_ and a strong background in solving systems of linear equations. For this miniproject we will need to know the general theory of partial fraction decompositions. We can rewrite a rational function $\frac{f(x)}{g(x)}$ by factoring $g(x)$ and looking at the powers of unique factors. | Factor of $g(x)$ | Term in partial fraction | | -------- | -------- | | $ax+b$ | $\frac{A}{ax+b}$ | | $(ax+b)^k$ | $\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_k}{(ax+b)^k}$ | | $ax^2+bx+c$ | $\frac{Ax+B}{ax^2+bx+c}$ | | $(ax^2+bx+c)^k$ | $\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\frac{A_kx+B_k}{(ax^2+bx+c)^k}$ | If the degree of $f(x)$ is greater than or equal to the degree of $g(x)$, then we have to do long division before finding the partial fraction decomposition. __Example.__ The fraction $$\frac{4x^4+34x63+71x^2-32x-128}{x^2(x+4)^3}$$ has a partial fraction decomposition of the form $$ \frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+4}+\frac{D}{(x+4)^2}+\frac{E}{(x+4)^3}. $$ __Example.__ The fraction $$\frac{x^6+x^4+x^3-x^2-1}{x^3(x^2+1)^2}$$ has a partial fraction decomposition of the form $$ \frac{A}{x}+\frac{B}{x^2}+\frac{C}{x^3}+\frac{Dx+E}{x^2+1}+\frac{Fx+G}{(x^2+1)^2}. $$ ___ __Problem 1.__ Find the partial fraction decomposition of the function $$f(x)=\frac{4}{x^2(x^2+4)}$$. The partial fraction decomposition of the function, $f(x)$, would be: __First, writing the form of the partial fraction decomposition:__ $$f(x)=\frac{4}{x^2(x^2+4)}=\frac{A}{x^2}+\frac{B}{x}+\frac{Cx+D}{x^2+4}$$ __Second, solving for each of the constants ($A,B,C,D$):__ Clearing the denominator, canceling like terms, and distributing: $$((x^2)(x^2+4))\frac{4}{(x^2)(x^2+4)}=((x^2)(x^2+4))\frac{A}{x^2}+((x^2)(x^2+4))\frac{B}{x}+((x^2)(x^2+4))\frac{Cx+D}{x^2+4}$$ $$4=A(x^2+4)+B(x)(x^2+4)+(Cx+D)(x^2)$$ $$4=A(x^2+4)+B(x)(x^2+4)+Cx^3+Dx^2$$ Letting $x=0$: $$4=A((0)^2+4)+B(0)((0)^2+4)+C(0)^3+D(0)^2$$ $$4=A(4)+0+0+0$$ $$4=A(4)$$ $$A=1$$ Letting $x=2i$: $$4=((2i)^2+4)+B(2i)((2i)^2+4)+C(2i)^3+D(2i)^2$$ $$4=0+0+8Ci^3+4Di^2$$ $$4+0i=-8Ci-4D$$ Separating real and imaginary terms and solving for constants $C$ and $D$: Imaginary: $0=-8C$; $C=0$ Real: $4=-4D$; $D=-1$ Solving for $B$ by letting $x=1$ after plugging in all other founds constants and simplifying: $$4=(x^2+4)+B(x)(x^2+4)-x^2$$ $$4=((1)^2+4)+B(1)((1)^2+4)-(1)^2$$ $$4=(5)+B(5)-(1)$$ $$0=B(5)$$ $$B=0$$ __Next, plugging in the found constants into the form of the partial fraction decomposition:__ $$f(x)=\frac{4}{x^2(x^2+4)}=\frac{A}{x^2}+\frac{B}{x}+\frac{Cx+D}{x^2+4}=\frac{(1)}{x^2}+\frac{(0)}{x}+\frac{(0)x+(-1)}{x^2+4}$$ $$f(x)=\frac{1}{x^2}-\frac{1}{x^2+4}$$ ___ __Problem 2.__ For the function $$g(x)=\frac{1}{(x+1)^4(x^2+1)}$$ Write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__. __Writing the form of the partial fraction decomposition:__ $$g(x)=\frac{1}{(x+1)^4(x^2+1)}=\frac{A}{(x+1)^4}+\frac{B}{(x+1)^3}+\frac{C}{(x+1)^2}+\frac{D}{(x+1)}+\frac{Ex+F}{(x^2+1)}$$ ___ __Problem 3.__ For the function $$h(x)=\frac{x^7}{(x^4-16)^2}$$ write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__. __First, factoring and simplifying the denominator:__ $$h(x)=\frac{x^7}{(x^4-16)^2}=\frac{x^7}{(x^4-16)(x^4-16)}=\frac{x^7}{(x^2+4)(x^2-4)(x^2+4)(x^2-4)}=\frac{x^7}{(x^2+4)^2(x+2)(x-2)(x+2)(x-2)}=\frac{x^7}{(x^2+4)^2(x+2)^2(x-2)^2}$$ __Then writing the partial fraction decomposition form for $h(x)$:__ $$h(x)=\frac{x^7}{(x^2+4)^2(x^2-4)^2}=\frac{Ax+B}{(x^2+4)^2}+\frac{Cx+D}{(x^2+4)}+\frac{E}{(x+2)^2}+\frac{F}{(x+2)}+\frac{G}{(x-2)^2}+\frac{H}{(x-2)}$$ ___ To submit this assignment click on the __Publish__ button. Then copy the url of the final document and submit it in Canvas.