Math 182 Miniproject 1 Partial Fractions.md
---
Math 182 Miniproject 1 Partial Fractions
===
**Overview:** In this project we explore more advanced partial fraction decomposition than we covered during class.
**Prerequisites:** Section 5.5 of _Active Calculus_ and a strong background in solving systems of linear equations.
For this miniproject we will need to know the general theory of partial fraction decompositions. We can rewrite a rational function $\frac{f(x)}{g(x)}$ by factoring $g(x)$ and looking at the powers of unique factors.
| Factor of $g(x)$ | Term in partial fraction |
| -------- | -------- |
| $ax+b$ | $\frac{A}{ax+b}$ |
| $(ax+b)^k$ | $\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_k}{(ax+b)^k}$ |
| $ax^2+bx+c$ | $\frac{Ax+B}{ax^2+bx+c}$ |
| $(ax^2+bx+c)^k$ | $\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\frac{A_kx+B_k}{(ax^2+bx+c)^k}$ |
If the degree of $f(x)$ is greater than or equal to the degree of $g(x)$, then we have to do long division before finding the partial fraction decomposition.
__Example.__ The fraction $$\frac{4x^4+34x63+71x^2-32x-128}{x^2(x+4)^3}$$ has a partial fraction decomposition of the form $$
\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+4}+\frac{D}{(x+4)^2}+\frac{E}{(x+4)^3}.
$$
__Example.__ The fraction $$\frac{x^6+x^4+x^3-x^2-1}{x^3(x^2+1)^2}$$ has a partial fraction decomposition of the form $$
\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x^3}+\frac{Dx+E}{x^2+1}+\frac{Fx+G}{(x^2+1)^2}.
$$
___
__Problem 1.__
Find the partial fraction decomposition of the function $$f(x)=\frac{4}{x^2(x^2+4)}$$.
The partial fraction decomposition of the function, $f(x)$, would be:
__First, writing the form of the partial fraction decomposition:__
$$f(x)=\frac{4}{x^2(x^2+4)}=\frac{A}{x^2}+\frac{B}{x}+\frac{Cx+D}{x^2+4}$$
__Second, solving for each of the constants ($A,B,C,D$):__
Clearing the denominator, canceling like terms, and distributing:
$$((x^2)(x^2+4))\frac{4}{(x^2)(x^2+4)}=((x^2)(x^2+4))\frac{A}{x^2}+((x^2)(x^2+4))\frac{B}{x}+((x^2)(x^2+4))\frac{Cx+D}{x^2+4}$$
$$4=A(x^2+4)+B(x)(x^2+4)+(Cx+D)(x^2)$$
$$4=A(x^2+4)+B(x)(x^2+4)+Cx^3+Dx^2$$
Letting $x=0$:
$$4=A((0)^2+4)+B(0)((0)^2+4)+C(0)^3+D(0)^2$$
$$4=A(4)+0+0+0$$
$$4=A(4)$$
$$A=1$$
Letting $x=2i$:
$$4=((2i)^2+4)+B(2i)((2i)^2+4)+C(2i)^3+D(2i)^2$$
$$4=0+0+8Ci^3+4Di^2$$
$$4+0i=-8Ci-4D$$
Separating real and imaginary terms and solving for constants $C$ and $D$:
Imaginary: $0=-8C$; $C=0$
Real: $4=-4D$; $D=-1$
Solving for $B$ by letting $x=1$ after plugging in all other founds constants and simplifying:
$$4=(x^2+4)+B(x)(x^2+4)-x^2$$
$$4=((1)^2+4)+B(1)((1)^2+4)-(1)^2$$
$$4=(5)+B(5)-(1)$$
$$0=B(5)$$
$$B=0$$
__Next, plugging in the found constants into the form of the partial fraction decomposition:__
$$f(x)=\frac{4}{x^2(x^2+4)}=\frac{A}{x^2}+\frac{B}{x}+\frac{Cx+D}{x^2+4}=\frac{(1)}{x^2}+\frac{(0)}{x}+\frac{(0)x+(-1)}{x^2+4}$$
$$f(x)=\frac{1}{x^2}-\frac{1}{x^2+4}$$
___
__Problem 2.__
For the function $$g(x)=\frac{1}{(x+1)^4(x^2+1)}$$ Write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__.
__Writing the form of the partial fraction decomposition:__
$$g(x)=\frac{1}{(x+1)^4(x^2+1)}=\frac{A}{(x+1)^4}+\frac{B}{(x+1)^3}+\frac{C}{(x+1)^2}+\frac{D}{(x+1)}+\frac{Ex+F}{(x^2+1)}$$
___
__Problem 3.__
For the function $$h(x)=\frac{x^7}{(x^4-16)^2}$$ write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__.
__First, factoring and simplifying the denominator:__
$$h(x)=\frac{x^7}{(x^4-16)^2}=\frac{x^7}{(x^4-16)(x^4-16)}=\frac{x^7}{(x^2+4)(x^2-4)(x^2+4)(x^2-4)}=\frac{x^7}{(x^2+4)^2(x+2)(x-2)(x+2)(x-2)}=\frac{x^7}{(x^2+4)^2(x+2)^2(x-2)^2}$$
__Then writing the partial fraction decomposition form for $h(x)$:__
$$h(x)=\frac{x^7}{(x^2+4)^2(x^2-4)^2}=\frac{Ax+B}{(x^2+4)^2}+\frac{Cx+D}{(x^2+4)}+\frac{E}{(x+2)^2}+\frac{F}{(x+2)}+\frac{G}{(x-2)^2}+\frac{H}{(x-2)}$$
___
To submit this assignment click on the __Publish__ button. Then copy the url of the final document and submit it in Canvas.