Math 181 Miniproject 11: Riemann Sums.md --- --- tags: MATH 181 --- Math 181 Miniproject 11: Riemann Sums === **Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus. **Prerequisites:** Section 4.3 of *Active Calculus.* --- :::info For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. ![](https://i.imgur.com/h56UdIm.png) Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. (1) Evaluate $R_3$ using Desmos. ::: (1) Using the Desmos Riemann Sum Application to calculate the right-hand Riemann sum for$f(x)$: $R_3=\sum_{i=1}^{n\ =\ 3}(1+3(i))\cdot 3=10.7820774995$ ![](https://i.imgur.com/NexHTQD.jpg) :::info (2) Evaluate $M_3$ using Desmos. ::: (2) Using the Desmos Riemann Sum Application to calculate the midpoint Riemann sum for$f(x)$: $M_3=\sum_{i=1}^{n\ =\ 3}f(\bar{x_i})\cdot 3=14.8990552326$ ![](https://i.imgur.com/sRaVwai.jpg) :::info (3) Evaluate $L_9$ using Desmos. ::: (3) Using the Desmos Riemann Sum Application to calculate the left-hand Riemann sum for$f(x)$: $L_3=\sum_{i=0}^{n\ =\ 3-1}(1+3(i))\cdot 3=27.6694261007$ ![](https://i.imgur.com/bguByrt.jpg) :::info (4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. ::: (4) As calculated for the right-hand Riemann Sum $R_{100}$: $R_{100}=\sum_{i=1}^{n\ =\ 100}(1+0.09(i))\cdot 0.09=15.7677319241$ :::info (5) Evaluate $R_{1000}$ using Desmos. ::: (5) As calculated for the right-hand Riemann Sum $R_{1,000}$: $R_{1,000}=\sum_{i=1}^{n\ =\ 1,000}(1+0.009(i))\cdot 0.009=15.9945370554$ :::info (6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. ::: (6) $\lim_{n \to \infty}\sum_{i=1}^{n=10 }(|\frac{10(x_{i})}{(x_{i})^2+1}sin(x_{i})|+\frac{4}{(x_{i})^2+1})\cdot \triangle(x)$ --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.