--- lang: ja tags: MTNS_2023, lecture --- # 最小添字規則による巡回の回避 講義で紹介した**巡回**が起きる問題: Confirm that the **cycling** in the following example: $$ \begin{alignat}{6} \displaystyle \max_{x_{1}, x_{2}, x_{3}, x_{4}} \quad &&3x_{1} &-&5x_{2}&+&x_{3}&-&2x_{4}&=&z\\ \text{s.t.} \quad && x_{1}&-&2x_{2}&-&x_{3}&+&2x_{4}&\leq&0\\ &&2x_{1}&-&3x_{2}&-&x_{3}&+&x_{4}&\leq&0\\ && & & & & x_{3} & & &\leq&1\\ && x_{1}&,&x_{2}&,&x_{3}&,&x_{4} &\geq&0 \end{alignat} $$に対し, **最小添字規則**を適用して**単体法**が終了する(**巡回**から抜け出せる)ことを確認せよ. can be resolved by applying the **smallest subscript rule**. $$ \begin{align} \begin{array}{c|cccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & -1\\ \hline -r_{1} & 1* & -2 & -1 & 2 & 0\\ -r_{2} & 2 & -3 & -1 & 1 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & -3 & 5 & -1 & 2 & 0 \end{array}&\Rightarrow \begin{array}{c|cccc|c} & r_{1} & x_{2} & x_{3} & x_{4} & -1\\ \hline -x_{1} & 1 & -2 & -1 & 2 & 0\\ -r_{2} & -2 & 1* & 1 & -3 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & 3 & -1 & -4 & 8 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{3} & x_{4} & -1\\ \hline -x_{1} & -3 & 2 & 1* & -4 & 0\\ -x_{2} & -2 & 1 & 1 & -3 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & 1 & 1 & -3 & 5 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{1} & x_{4} & -1\\ \hline -x_{3} & -3 & 2 & 1 & -4 & 0\\ -x_{2} & 1 & -1 & -1 & 1* & 0\\ -r_{3} & 3 & -2 & -1 & 4 & 1\\ \hline -z & -8 & 7 & 3 & -7 & 0 \end{array}\\ \text{最小添字規則を適用 | Apply the smallest subscript rule} &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{1} & x_{2} & -1\\ \hline -x_{3} & 1 & -2 & -3 & 4 & 0\\ -x_{4} & 1 & -1 & -1 & 1 & 0\\ -r_{3} & -1 & 2 & 3* & -4 & 1\\ \hline -z & -1 & 0 & -4 & 7 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & r_{3} & x_{2} & -1\\ \hline -x_{3} & 0 & 0 & 1 & 0 & 1\\ -x_{4} & \frac{2}{3}* & -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3}\\ -x_{1} & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & -\frac{4}{3} & \frac{1}{3}\\ \hline -z & -\frac{7}{3} & \frac{8}{3} & \frac{4}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & x_{4} & r_{2} & r_{3} & x_{2} & -1\\ \hline -x_{3} & 0 & 0 & 1 & 0 & 1\\ -r_{1} & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ -x_{1} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{3}{2} & \frac{1}{2}\\ \hline -z & \frac{7}{2} & \frac{3}{2} & \frac{5}{2} & \frac{1}{2} & \frac{5}{2} \end{array} \end{align} $$ これより,最適解は$x_{1}^{\ast}=\frac{1}{2}, x_{3}^{\ast}=1, x_{2}^{\ast}=x_{4} =0$で最適値は$z^{\ast}=\frac{5}{2}$. It therefore finds that the optimal solution $x_{1}^{\ast}=\frac{1}{2}, x_{3}^{\ast}=1, x_{2}^{\ast}=x_{4} =0$ and the optimal value $z^{\ast}=\frac{5}{2}$.