--- lang: ja tags: MTNS-2022, lecture, linear programming --- # 2022年度 交通社会システム論<br>第6回 練習問題 解答例<br>Report #2 Answer [ポータルへ戻る](https://hackmd.io/@nagae/MTNS_2022) <div style="text-align: center"> このページへは以下のQRコードまたはURLからアクセスできます: ![](https://i.imgur.com/9TiVtn9.png =200x) <code style="font-size:20pt">https://hackmd.io/@nagae/MTNS_2022-Ch05-answer</code> </div> ## 課題1 | Exercise 1 以下の問題を**単体法**で解け. Solve the following problem by using the simplex method. $$ \begin{alignat}{6} \displaystyle \max_{x_{1}, x_{2}, x_{3}} \quad &x_{1} &+&x_{2}&+&2x_{3}&=&z\\ \text{s.t.} \quad & &&x_{2}&+&2x_{3}&\leq&3\\ -&x_{1}&&&+&3x_{3}&\leq&2\\ &2x_{1}&+&x_{2}&+&x_{3}&\leq&1\\ & x_{1}&,&x_{2} &,& x_{3}&\geq& 0 \end{alignat} $$ $$ \begin{align} \begin{array}{c|ccc|c} & x_{1} & x_{2} & x_{3} & -1\\ \hline -r_{1} & 0 & 1 & 2 & 3\\ -r_{2} & -1 & 0 & 3 & 2\\ -r_{3} & 2 & 1* & 1 & 1\\ \hline -z& -1 & -1 & -2 & 0\\ \end{array} &\Rightarrow \begin{array}{c|ccc|c} & x_{1} & r_{3} & x_{3} & -1\\ \hline -r_{1} & -2 & -1 & 1 & 2\\ -r_{2} & -1 & 0 & 3* & 2\\ -x_{2} & 2 & 1 & 1 & 1 \\ \hline -z & 1 & 1 & -1 & 1 \end{array}\\ &\Rightarrow \begin{array}{c|ccc|c} & x_{1} & r_{3} & r_{2} & -1\\ \hline -r_{1} &-\frac{5}{3} & -1 & -\frac{1}{3} & \frac{4}{3}\\ -x_{3} &-\frac{1}{3} & 0 & \frac{1}{3} & \frac{2}{3}\\ -x_{2} &\frac{7}{3} & 1 & -\frac{1}{3} & \frac{1}{3}\\ \hline -z & \frac{2}{3} & 1 & \frac{1}{3} & \frac{5}{3} \end{array} \end{align} $$ 最適解は$(r_{1}^{\ast}, x_{3}^{\ast}, x_{2}^{\ast}|x_{1}^{\ast}, r_{3}^{\ast}, r_{2}^{\ast}) = (\frac{4}{3}, \frac{2}{3}, \frac{1}{3}|0, 0, 0)$,すなわち$x_{1}^{\ast}=0,x_{2}^{\ast}=\frac{1}{3},x_{3}^{\ast}=\frac{2}{3}$で最適値は$z^{\ast}=\frac{5}{3}$. The optimal solution is $(r_{1}^{\ast}, x_{3}^{\ast}, x_{2}^{\ast}|x_{1}^{\ast}, r_{3}^{\ast}, r_{2}^{\ast}) = (\frac{4}{3}, \frac{2}{3}, \frac{1}{3}|0, 0, 0)$, or equivalently, $x_{1}^{\ast}=0,x_{2}^{\ast}=\frac{1}{3},x_{3}^{\ast}=\frac{2}{3}$ and the optimal value is $z^{\ast}=\frac{5}{3}$. ### 別の解軌跡 | Another Solution Path $$ \begin{align} \begin{array}{c|ccc|c} & x_{1} & x_{2} & x_{3} & -1\\ \hline -r_{1} & 0 & 1 & 2 & 3\\ -r_{2} & -1 & 0 & 3* & 2\\ -r_{3} & 2 & 1 & 1 & 1\\ \hline -z& -1 & -1 & -2 & 0\\ \end{array} &\Rightarrow \begin{array}{c|ccc|c} & x_{1} & x_{2} & r_{2} & -1\\ \hline -r_{1} & \frac{2}{3} & 1 & -\frac{2}{3} & \frac{5}{3}\\ -x_{3} & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{2}{3}\\ -r_{3} & \frac{7}{3}* & 1 & -\frac{1}{3} & \frac{1}{3}\\ \hline -z& -\frac{5}{3} & -1 & \frac{2}{3} & \frac{4}{3}\\ \end{array}\\ &\Rightarrow \begin{array}{c|ccc|c} & r_{3} & x_{2} & r_{2} & -1\\ \hline -r_{1} & -\frac{2}{7} & \frac{5}{7} & -\frac{4}{7} & \frac{11}{7}\\ -x_{3} & \frac{1}{7} & \frac{1}{7} & \frac{2}{7} & \frac{5}{7}\\ -x_{1} & \frac{3}{7} & \frac{3}{7}* & -\frac{1}{7} & \frac{1}{7} \\ \hline -z & \frac{5}{7} & -\frac{2}{7} & \frac{3}{7} & \frac{11}{7} \end{array}\\ &\Rightarrow \begin{array}{c|ccc|c} & r_{3} & x_{1} & r_{2} & -1\\ \hline -r_{1} &-1 & -\frac{5}{3} & -\frac{1}{3} & \frac{4}{3}\\ -x_{3} & 0 &-\frac{1}{3} & \frac{1}{3} & \frac{2}{3}\\ -x_{2} &1 &\frac{7}{3} & -\frac{1}{3} & \frac{1}{3}\\ \hline -z & 1 &\frac{2}{3} & \frac{1}{3} & \frac{5}{3} \end{array} \end{align} $$ ## 課題2 | Exercise 2 講義で紹介した**巡回**が起きる問題: Confirm that the **cycling** in the following example: $$ \begin{alignat}{6} \displaystyle \max_{x_{1}, x_{2}, x_{3}, x_{4}} \quad &&3x_{1} &-&5x_{2}&+&x_{3}&-&2x_{4}&=&z\\ \text{s.t.} \quad && x_{1}&-&2x_{2}&-&x_{3}&+&2x_{4}&\leq&0\\ &&2x_{1}&-&3x_{2}&-&x_{3}&+&x_{4}&\leq&0\\ && & & & & x_{3} & & &\leq&1\\ && x_{1}&,&x_{2}&,&x_{3}&,&x_{4} &\geq&0 \end{alignat} $$に対し, **最小添字規則**を適用して**単体法**が終了する(**巡回**から抜け出せる)ことを確認せよ. can be resolved by applying the **smallest subscript rule**. $$ \begin{align} \begin{array}{c|cccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & -1\\ \hline -r_{1} & 1* & -2 & -1 & 2 & 0\\ -r_{2} & 2 & -3 & -1 & 1 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & -3 & 5 & -1 & 2 & 0 \end{array}&\Rightarrow \begin{array}{c|cccc|c} & r_{1} & x_{2} & x_{3} & x_{4} & -1\\ \hline -x_{1} & 1 & -2 & -1 & 2 & 0\\ -r_{2} & -2 & 1* & 1 & -3 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & 3 & -1 & -4 & 8 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{3} & x_{4} & -1\\ \hline -x_{1} & -3 & 2 & 1* & -4 & 0\\ -x_{2} & -2 & 1 & 1 & -3 & 0\\ -r_{3} & 0 & 0 & 1 & 0 & 1\\ \hline -z & 1 & 1 & -3 & 5 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{1} & x_{4} & -1\\ \hline -x_{3} & -3 & 2 & 1 & -4 & 0\\ -x_{2} & 1 & -1 & -1 & 1* & 0\\ -r_{3} & 3 & -2 & -1 & 4 & 1\\ \hline -z & -8 & 7 & 3 & -7 & 0 \end{array}\\ \text{最小添字規則を適用 | Apply the smallest subscript rule} &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & x_{1} & x_{2} & -1\\ \hline -x_{3} & 1 & -2 & -3 & 4 & 0\\ -x_{4} & 1 & -1 & -1 & 1 & 0\\ -r_{3} & -1 & 2 & 3* & -4 & 1\\ \hline -z & -1 & 0 & -4 & 7 & 0 \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & r_{1} & r_{2} & r_{3} & x_{2} & -1\\ \hline -x_{3} & 0 & 0 & 1 & 0 & 1\\ -x_{4} & \frac{2}{3}* & -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3}\\ -x_{1} & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & -\frac{4}{3} & \frac{1}{3}\\ \hline -z & -\frac{7}{3} & \frac{8}{3} & \frac{4}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\\ &\Rightarrow \begin{array}{c|cccc|c} & x_{4} & r_{2} & r_{3} & x_{2} & -1\\ \hline -x_{3} & 0 & 0 & 1 & 0 & 1\\ -r_{1} & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ -x_{1} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{3}{2} & \frac{1}{2}\\ \hline -z & \frac{7}{2} & \frac{3}{2} & \frac{5}{2} & \frac{1}{2} & \frac{5}{2} \end{array} \end{align} $$ これより,最適解は$x_{1}^{\ast}=\frac{1}{2}, x_{3}^{\ast}=1, x_{2}^{\ast}=x_{4} =0$で最適値は$z^{\ast}=\frac{5}{2}$. It therefore finds that the optimal solution $x_{1}^{\ast}=\frac{1}{2}, x_{3}^{\ast}=1, x_{2}^{\ast}=x_{4} =0$ and the optimal value $z^{\ast}=\frac{5}{2}$.