# Human 測試 similarity - 內建 ## 使用 ROC 接下來套用模板, 混淆矩陣 ### model - threshold | 真同個人 | 偽同個人 | | -------- | ------ | | 偽不同人 | 真不同人 | * TPR: * FPR: * ACC: * ave ACC: PS: (真同個人 / 實際同個人 + 真不同人 / 實際不同人) / 2 * 除了列出 0.4 - 0.9 會嘗試找促使 ACC, ave ACC 較高的 threshold --- ### HSE FaceRes(Deep) - 0.4 | 1210 | 3596 | | -------- | ------ | | 0 | 4 | * TPR: 100 % * FPR: 99.89 % * ACC: 25.24 % ### HSE FaceRes(Deep) - 0.5 | 1209 | 3475 | | -------- | ------ | | 1 | 125 | * TPR: 99.92 % * FPR: 96.53 % * ACC: 27.73 % ### HSE FaceRes(Deep) - 0.6 | 1163 | 1866 | | -------- | ------ | | 47 | 1734 | * TPR: 96.12 % * FPR: 51.83 % * ACC: 60.23 % * ave ACC: 72.14 % ### HSE FaceRes(Deep) - 0.64 | 1041 | 806 | | -------- | ------ | | 169 | 2794 | * TPR: 86.03 % * FPR: 22.39 % * ACC: 79.73 % * ave ACC: 81.82 % ### HSE FaceRes(Deep) - 0.65 | 984 | 590 | | -------- | ------ | | 226 | 3010 | * TPR: 81.32 % * FPR: 16.39 % * ACC: 83.04 % * ave ACC: 82.47 % ### HSE FaceRes(Deep) - 0.67 | 984 | 252 | | -------- | ------ | | 376 | 3348 | * TPR: 68.93 % * FPR: 7.00 % * ACC: 86.94 % * ave ACC: 80.96 % ### HSE FaceRes(Deep) - 0.68 | 752 | 138 | | -------- | ------ | | 458 | 3462 | * TPR: 62.15 % * FPR: 3.83 % * ACC: 87.61 % * ave ACC: 79.16 % ### HSE FaceRes(Deep) - 0.69 | 657 | 76 | | -------- | ------ | | 553 | 3524 | * TPR: 54.30 % * FPR: 2.11 % * ACC: 86.92 % ### HSE FaceRes(Deep) - 0.7 | 553 | 38 | | -------- | ------ | | 657 | 3562 | * TPR: 45.70 % * FPR: 1.06 % * ACC: 85.55 % ### HSE FaceRes(Deep) - 0.8 | 39 | 0 | | -------- | ------ | | 1171 | 3600 | * TPR: 3.22 % * FPR: 0 % * ACC: 75.65 % ### HSE FaceRes(Deep) - 0.9 | 3 | 0 | | -------- | ------ | | 1207 | 3600 | * TPR: 0.25 % * FPR: 0 % * ACC: 74.91 % ### ROC 圖(點旁的標註為 threshold) 藍色: highest ave ACC 綠色: highest ACC  ave detect single image: 102.58 ms --- ### HSE FaceRes - 0.4 | 1190 | 1467 | | -------- | ------ | | 20 | 2133 | * TPR: 98.35 % * FPR: 40.75 % * ACC: 69.09 % * ave ACC: 78.80 % ### HSE FaceRes - 0.44 | 1128 | 549 | | -------- | ------ | | 82 | 3051 | * TPR: 93.22 % * FPR: 15.25 % * ACC: 86.88 % * ave ACC: 88.99 % ### HSE FaceRes - 0.45 | 1090 | 403 | | -------- | ------ | | 120 | 3197 | * TPR: 90.08 % * FPR: 11.19 % * ACC: 89.13 % * ave ACC: 89.44 % ### HSE FaceRes - 0.47 | 987 | 220 | | -------- | ------ | | 223 | 3380 | * TPR: 81.57 % * FPR: 6.11 % * ACC: 90.79 % * ave ACC: 87.73 % ### HSE FaceRes - 0.48 | 924 | 135 | | -------- | ------ | | 286 | 3465 | * TPR: 76.36 % * FPR: 3.75 % * ACC: 91.25 % * ave ACC: 86.31 % ### HSE FaceRes - 0.49 | 862 | 91 | | -------- | ------ | | 348 | 3509 | * TPR: 71.24 % * FPR: 2.53 % * ACC: 90.87 % * ave ACC: 84.36 % ### HSE FaceRes - 0.5 | 795 | 63 | | -------- | ------ | | 415 | 3537 | * TPR: 65.70 % * FPR: 1.75 % * ACC: 90.06 % * ave ACC: 81.98 % ### HSE FaceRes - 0.6 | 208 | 0 | | -------- | ------ | | 1002 | 3600 | * TPR: 17.19 % * FPR: 0 % * ACC: 79.17 % * ave ACC: 58.60 % ### HSE FaceRes - 0.7 | 41 | 0 | | -------- | ------ | | 1169 | 3600 | * TPR: 3.42 % * FPR: 0 % * ACC: 75.70 % ### HSE FaceRes - 0.8 | 4 | 0 | | -------- | ------ | | 1206 | 3600 | * TPR: 0.33 % * FPR: 0 % * ACC: 74.93 % ### HSE FaceRes - 0.9 | 2 | 0 | | -------- | ------ | | 1208 | 3600 | * TPR: 0.17 % * FPR: 0 % * ACC: 74.89 % ### ROC 圖(點旁的標註為 threshold) 藍色: highest ave ACC 綠色: highest ACC  ave detect single image: 104.17 ms --- ### mobileface - 0.4/0.5/0.6/0.8/0.9 | 1210 | 3600 | | -------- | ------ | | 0 | 0 | * TPR: 100 % * FPR: 100 % * ACC: 25.16 % ### mobileface - 0.95 | 1141 | 3326 | | -------- | ------ | | 69 | 274 | * TPR: 94.30 % * FPR: 92.39 % * ACC: 29.42 % * ave ACC: 50.95 % ### mobileface - 0.96 | 891 | 2249 | | -------- | ------ | | 319 | 1351 | * TPR: 73.64 % * FPR: 62.47 % * ACC: 46.61 % * ave ACC: 55.58 % ### mobileface - 0.97 | 434 | 666 | | -------- | ------ | | 776 | 2934 | * TPR: 35.87 % * FPR: 18.50 % * ACC: 70.02 % * ave ACC: 58.68 % ### mobileface - 0.98 | 65 | 27 | | -------- | ------ | | 1145 | 3573 | * TPR: 5.37 % * FPR: 0.75 % * ACC: 75.63 % * ave ACC: 52.31 % ### mobileface - 0.99 | 0 | 0 | | -------- | ------ | | 1210 | 3600 | * TPR: 0 % * FPR: 0 % * ACC: 74.84 % * ave ACC: 50.00 % ### ROC 圖(點旁的標註為 threshold) 藍色: highest ave ACC 綠色: highest ACC  ave detect single image: 82.40 ms --- ### mobilefacenet - 0.4/0.5/0.6/0.8/0.9 | 1210 | 3600 | | -------- | ------ | | 0 | 0 | * TPR: 100 % * FPR: 100 % * ACC: 25.16 % ### mobilefacenet - 0.998 | 1210 | 3487 | | -------- | ------ | | 0 | 113 | * TPR: 100 % * FPR: 96.86 % * ACC: 27.51 % * ave ACC: 51.57 % ### mobilefacenet - 0.9985 | 1187 | 2983 | | -------- | ------ | | 23 | 617 | * TPR: 98.10 % * FPR: 82.86 % * ACC: 37.51 % * ave ACC: 57.62 % ### mobilefacenet - 0.999 | 941 | 1663 | | -------- | ------ | | 269 | 1937 | * TPR: 77.77 % * FPR: 46.19 % * ACC: 59.83 % * ave ACC: 65.79 % ### mobilefacenet - 0.9993 | 534 | 660 | | -------- | ------ | | 676 | 2940 | * TPR: 44.13 % * FPR: 18.33 % * ACC: 59.83 % * ave ACC: 62.90 % ### mobilefacenet - 0.9995 | 251 | 201 | | -------- | ------ | | 959 | 3399 | * TPR: 20.74 % * FPR: 5.58 % * ACC: 75.88 % * ace ACC: 57.58 % ### mobilefacenet - 0.9997 | 43 | 28 | | -------- | ------ | | 1167 | 3572 | * TPR: 3.55 % * FPR: 0.78 % * ACC: 75.16 % * ace ACC: 51.39 % ### ROC 圖(點旁的標註為 threshold) 藍色: highest ave ACC 綠色: highest ACC  ave detect single image: 87.03
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up