# 多項式 [toc] ### 多項式求和 - 題目敘述:設多項式$\begin{split}f(x)=&(x+9)^5-4(x+9)^4-72(x+9)^3-56(x+9)^2+15(x+9)+7\\=&a(x-1)^5+b(x-1)^4+c(x-1)^3+d(x-1)^2+e(x-1)+f\end{split}$ - 求$a+b+c+d+e+f之值$ - 想法:$\;x=2\;代入即可$ - 題解: $\begin{split}f(2)=&11^5-4\times 11^4-72\times 11^3-56\times 11^2+15\times 11+7\\=&a+b+c+e+d\\=&51 \end{split}$ $Ans.51$ ### 給定特定項次之值,反推原多項式 - 題目敘述:$有一四次多項式f(x),滿足f(1)=f(2)=f(3)=113\;,$$f(4)=f(5)=17\;,\;$求$f(x)之常數項$ - 想法:令$h(x)=f(x)-113$ - 題解: $deg(f(x))=4,deg(h(x))=4,又h(1)=h(2)=h(3)=0$ $設h(x)=(x-1)(x-2)(x-3)(ax+b),h(4)=h(5)=17$ $整理可得$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up