# **Daily Logs - Ray**
###### tags: `Daily logs`
* 5/13
* 初步了解且嘗試將zc sequence IQ signal的值用2’s complement去定義
* survey paper
* 5/14
* 看論文 Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7
* 與網路實驗助教們一同想停課替代方案
* 處理實驗室110年度1-3月各計畫(公務)用品自行列冊列管清冊
* 5/17
* 處理網路實驗遠距教學之內容
* survey paper
* 5/18
* 處理網路實驗遠距教學之內容
* survey paper
* 5/19
* 與John線上討論、測試兩台repeater同步、觀測repeater之zc sequence事項
* survey paper
* 5/20
* repeater計畫處理發現的bug,解issue
* 5/21
* 上網課 網路技術分析
* 5/24
* repeater計畫處理zc sequence module 之 code
* 5/26
* survey paper
* repeater計畫思考如何處理rx端訊號之雜訊與phase offset
* 5/27
* 複習有關 Match filter 知識
* 5/28
* 寫matlab code (分析repeater計畫中repeater tx 與 rx端收到之data)
* 5/30
* survey paper
* 5/31
* survey paper
* survey carrier frequency offset and sample frequency offset
* 6/1
* survey paper
* survey wifi室內定位技術
* 6/2
* 繼續寫matlab code (分析repeater計畫中repeater tx 與 rx端收到之data)
* survey paper
* 6/3
* 寫matlab code (repeater計畫中repeater tx 與 rx端收到之data之取值與2進位十進位轉換)
* 6/4
* debug matlab code
* ML HW3
* 6/5
* ML HW3
* 讀paper Coexistence Management for URLLC in Campus Networks via Deep Reinforcement Learning
* 6/7
* ML HW3
* 讀paper Coexistence Management for URLLC in Campus Networks via Deep Reinforcement Learning(公式與algorithm)
* 6/8
* ML HW3 修改coding 撰寫報告
* 網路技術分析複習期中報告
* 6/9
* survey Markov Decision Process
* 網路技術分析複習期中報告、回答問題
* 6/11
* 寫matlab code 與將John給的資料放進matlab做分析(同一台repeater tx 送與 rx端收到之data)
* survey RNN
* 6/13
* 完成網路技術分析second presentation ppt
* survey CNN
* 6/14
* 準備網路技術分析second presentation 英文講稿
* 做網路技術分析期末project
* 6/15
* 完成網路技術分析期末project
* survey DRL and Q-learning(paper中核心內容)
* 6/16
* 6/16 Survey E-greedy演算法 on-policy v.s off-policy Q-learning
* survey reference[13] A Deeper Look at Experience Replay
* 製作 報告paper ppt
* 6/17
* 製作 報告 paper ppt
* 思考 my opinion
* 6/18
* 寫matlab code 將John給的資料放進matlab做分析(同一台repeater tx 送與 rx端收、一台repeater tx送與 另一台repeater rx端收)
* 6/20
* 無線通訊期末考準備
* 6/21
* 無線通訊期末考準備
* 6/22
* paper IP RAN Hybrid Provisioning in 5G Backhaul Network
* 莫凡python
* 6/23
* 實驗課作業打分數
* paper IP RAN Hybrid Provisioning in 5G Backhaul Network
* 6/24
* 實驗課分數處理
* paper IP RAN Hybrid Provisioning in 5G Backhaul Network
* 6/25
* 處理實驗室財產
* 6/27
* paper審查IP RAN Hybrid Provisioning in 5G Backhaul Network
* 6/29
* 處理、統整學期末實驗課資料
* paper審查IP RAN Hybrid Provisioning in 5G Backhaul Network英文版
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 6/30
* Best Reinforcement Learning Tutorials, Examples, Projects, and Courses
* Recommendation Systems using Reinforcement Learning
* 7/1
* 莫凡python
* 7/2
* 與John討論repeater計畫air傳輸之事項
* 莫凡python
* 7/5
* 去展連拿repeater
* 莫凡python
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 7/6
* 莫凡python
* survey paper Multiple Channel Access using Deep Reinforcement Learning for Congested Vehicular Networks
* survey paper DQN-Based Power Control for IoT Transmission against Jamming
* 7/7
* 採購splitter
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 7/9
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 7/10
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 7/12
* survey Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* survey A Progressive Single Channel Reservation Scheme for URLLC in Unlicensed Band
* 7/13
* Make paper reports ppt
* survey policy gradient
* survey A Progressive Single Channel Reservation Scheme for URLLC in Unlicensed Band
* 7/14
* Make paper reports ppt
* survey multipath DNN
* survey A Progressive Single Channel Reservation Scheme for URLLC in Unlicensed Band
* think select the best channel over RL
* 7/15
* Make paper reports ppt
* think select the best channel over RL
* report Reinforcement learning‑based hybrid spectrum resource allocation scheme for the high load of URLLC services
* 7/16
* survey 莫凡python Reinforcement learning
* 7/19
* Go to the company to test the zc sequence in the repeater project through air transmission
* 7/20
* survey python pandas
* 7/22
* survey python pandas
* 7/23
* survey python pandas、Matplotlib
* 7/26
* ask the salse of woken about 3-way spliter and survey the spec of 3-way spliter
* 8/6
* Change the laboratory computer from HDD to SSD
* 8/10
* buy 4-way spliter and termination
* Look at the code of [https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/5_Deep_Q_Network/RL_brain.py](https://)
* 8/11
* Look at the code of [https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/5_Deep_Q_Network/RL_brain.py](https://)
* 8/12
* survey paper Radio Resource Scheduling for 5G NR via Deep Deterministic Policy Gradient
* update the property of our lab
## **Renew**
* 10/6
* talk with John about the content of repeater project
* deal with the property of MWNL
* survey tensorflow
* read the ppt of random access analysis
* prepare the DRL over P-SCR ppt for report tomorrow
* 10/7
* review the repeater project of simulation and teach John
* Discuss the DRL plan with teachers and John
* 10/13
* Hung-yi Lee meachine learning video 2 episode
* survey use C code in python
* read paper about hidden node probability
* 10/14
* Hung-yi Lee meachine learning video 2 episode
* 10/15
* Dealing with the scrapping of MWNL property
* 10/18
* survey use C code in python
* survey pytorch but still want to use tensorflow
* meeting with akon about the RL project
* 10/19
* Hung-yi Lee meachine learning video 1 episode