# Új témák MLJC-re ### Contrastive Learning * Contrastive Learning Inverts the Data Generating Process - Roland/Yash/Wieland * CPC * Contrastive Representation Learning [blogpost](https://lilianweng.github.io/2021/05/31/contrastive-representation-learning.html) ### Meta-learning (Feri) * MAML and Reptile \[[1](https://arxiv.org/abs/1703.03400v3), [2](https://arxiv.org/abs/1803.02999v3)\] * implicit function theorem and iMAML \[[1](https://arxiv.org/abs/1909.04630), [2](https://arxiv.org/abs/1911.02590v1)\] * Natural Neural Networks and WarpGrad \[[1](https://arxiv.org/abs/1507.00210), [2](https://arxiv.org/abs/1909.00025)\] * invite: Chelsea Finn ### Natural Gradient Descent (Feri) * NGD * K-FAC and Exact NGD in Linear Networks * Wasserstein natural gradients * invite: Michael Arbel ### Differential Privacy * Algorithmic foundations of Differential Privacy \[[1](https://www.tau.ac.il/~saharon/BigData2018/privacybook.pdf): approx. Chapters 1-3] * DP-SGD \[[1](https://dl.acm.org/doi/abs/10.1145/2976749.2978318)] * ? * invite: ??/Andrew Trask ### Geometric Deep Learning * Group Equivariant CNNs * Spherical CNNs * Gauge Invariant CNNs * invited speaker: Kondor Risi, Taco Cohen ### Inference in Graphical Models * Belief Propagation * Viterbi, forward-backward * ADF and EM * Variational Message Passing * invite: Tom Minka ### Continual Learning * EWC * Learning without Forgetting * Variational Continual Learning * invite: Raia Hadsell ### PCA Extended (Patrik) * Contrastive PCA [paper](https://arxiv.org/abs/1709.06716) * Probabilistic Contrastive PCA [paper](https://arxiv.org/abs/2012.07977) * Variational Autoencoders Pursue PCA Directions (by Accident) [paper](https://arxiv.org/abs/1812.06775) ### Reinforcement Learning * Neu Gergely ### Causal Inference * [Önreklám - Patrik blogja](https://rpatrik96.github.io/) ### Few-shot/small data ### Domain adaptation ### VAEs & Co * VAEBM * PCA-VAE * iVAE ### EBMs * MCMC * Score Matching * VAEBM * How to train your EBM ### Network & Data visualization * Saliency map * Feature visualization * Interpretability * UMAP : [On UMAP's true loss function](http://arxiv.org/abs/2103.14608) * t-SNE [post](https://distill.pub/2016/misread-tsne/) * Laplacian eigenmaps * Locally linear embeddig * Isomaps