# generative model $$ Z \sim P_s $$ $$ X = A Z $$ $$ P_s(Z) = \prod_i P_s(Z_i) $$ $$ W = A^{-1} $$ ## Maximum likelihood $$ \log p(x) = \log p_s(Wx) - \log \vert W \vert $$ $$ \log p(x) = -\|Wx\|_1 + \log \vert W \vert $$ ## PCA $$ P_s = \mathcal{N}(0, I) $$ ### Rotation invariance $R$ is a rotation, then $$ \log \vert RW \vert = \log \vert W \vert $$ and $$ \log p_s(RWx) = \log p_s(Wx) $$ $$ \log p_W(x) = \log p_{RW}(x) $$ PCA: additional constraint $$ W = U^T S V $$ PCA "canonical" rotation: $$ W^* = UU^T S V $$ ### ICA $P_s$ non-Gaussian
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up