# [501. Find Mode in Binary Search Tree](https://leetcode.com/problems/find-mode-in-binary-search-tree/)
###### tags: `Divide and Conquer`, `Binary Tree`, `Hash and Heap`, `Bloomberg`
Description:
Given the `root` of a binary search tree (BST) with duplicates, return *all the `mode(s)` (i.e., the most frequently occurred element) in it*.
If the tree has more than one mode, return them in **any order**.
Assume a BST is defined as follows:
* The left subtree of a node contains only nodes with keys **less than or equal to** the node's key.
* The right subtree of a node contains only nodes with keys **greater than or equal to** the node's key.
* Both the left and right subtrees must also be binary search trees.
## Solution:
* Naive: during traversing the tree, record the count of each node and compare out the max count. Then, get the nodes with max count.
```java=
class Solution {
public int[] findMode(TreeNode root) {
Map<Integer, Integer> map = new HashMap<>();
int[] max = new int[1];
inorder(root, map, max);
List<Integer> list = new ArrayList<>();
for (int key : map.keySet()) {
int cnt = map.get(key);
if (cnt == max[0]) list.add(key);
}
// good use of java.util.stream
return list.stream().mapToInt(i -> i).toArray();
}
private void inorder(TreeNode root, Map<Integer, Integer> map, int[] max) {
if (root == null) return;
inorder(root.left, map, max);
map.put(root.val, map.getOrDefault(root.val, 0) + 1);
max[0] = Math.max(max[0], map.get(root.val));
inorder(root.right, map, max);
}
}
```
Time: O(n)
Space: O(n)
* Tree Traversal (hard)
```java
class Solution {
private int[] modes;
private Integer currVal;
private int currCount = 0;
private int modeCount = 0;
private int maxCount = 0;
public int[] findMode(TreeNode root) {
inorder(root);
modes = new int[modeCount];
modeCount = 0;
currCount = 0;
inorder(root);
return modes;
}
private void inorder(TreeNode root) {
if (root == null) return;
inorder(root.left);
helper(root.val);
inorder(root.right);
}
private void helper(int val) {
if (currVal == null) currVal = val;
if (currVal != val) {
currCount = 0;
currVal = val;
}
currCount++;
if (currCount > maxCount) {
modeCount = 1;
maxCount = currCount;
} else if (currCount == maxCount) {
if (modes != null && modeCount < modes.length) {
modes[modeCount] = currVal;
}
modeCount++;
}
}
}
```
Time: O(n)
Space: O(1)
* Tree Traversal (easy)
```java=
class Solution {
Integer prev;
public int[] findMode(TreeNode root) {
// cnt[0]: currCount
// cnt[1]: maxCount
int[] cnt = new int[2];
int[] prev = null;
List<Integer> list = new ArrayList<>();
inorder(root, cnt, list);
return list.stream().mapToInt(i -> i).toArray();
}
private void inorder(TreeNode root, int[] cnt, List<Integer> list) {
if (root == null) return;
inorder(root.left, cnt, list);
updateCount(root.val, cnt, list);
inorder(root.right, cnt, list);
}
private void updateCount(int val, int[] cnt, List<Integer> list) {
if (prev == null || prev != val) {
cnt[0] = 0;
prev = new Integer(val);
}
cnt[0]++;
if (cnt[0] >= cnt[1]) {
if (cnt[0] > cnt[1]) {
cnt[1] = cnt[0];
list.clear();
}
list.add(val);
}
}
}
```
Time: O(n)
Space: O(1)
* Tree Traversal (Iterative)
```java=
class Solution {
public int[] findMode(TreeNode root) {
if (root == null) {
return new int[0];
}
Stack<TreeNode> stack = new Stack();
while (root != null) {
stack.push(root);
root = root.left;
}
int prevVal = stack.peek().val;
int maxCount = 0;
int currCount = 0;
List<Integer> list = new ArrayList<>();
while (!stack.isEmpty()) {
TreeNode node = stack.pop();
if (node.val != prevVal) {
currCount = 0;
prevVal = node.val;
}
currCount++;
if (currCount >= maxCount) {
if (currCount > maxCount) {
maxCount = currCount;
list.clear();
}
list.add(node.val);
}
node = node.right;
while (node != null) {
stack.push(node);
node = node.left;
}
}
return list.stream().mapToInt(i -> i).toArray();
}
}
```
Time: O(n)
Space: O(1)