# Data Visualization Lab notes
## Lecture 1
### What is data visualization?
### Data visualization Elements
### Dimensionality reduction algorithms
### Information requires
* Salience
* Credibility
* Legitimacy
## Lecture 2
### History of DVL
## Lecture 3
### Foundation of Data Visualization
#### Ingradients
* Data
* Data represntation
* Data Presentation
* Data understanding
- Perceiving
- Interpreting
- Comperhending
#### Principles of Good Data Visualization
* Trustworthy (Integrity + Accuracy + Legitimacy)
* Accessible
* Elegant - Visualization should be very simple
## Lecture 4
### Data visualization work flow
* Briefing data
* Context
* Vision
* Skill & Resources + Frequency
* Working with data
* Data Acquisition
* Data examination
* Data Transformation
* Data exploration
* Stablishing Editorial thinking
* Focus
* Angle
* Framing
* Design a solution
## Lecture 5
### Data Representation
Datavis perception => Decoding elements of a graph
Datavis interpretation => Decoding meaning of a graph
#### Visual Encoding
* Annotation
* Quantity
* Size
* Position
* Color
#### Marks
* Quantitative
* Point => quantity as position on scale
* Line
* Linear spatial dimension
* Quantity as variantion in size
* Area
* Quadratic spatial dimension
* Quantity as variantion in size and position
* Form
* Cubic spatial dimension
* Quantity as variation in volume
* Position
* Angle/slope
* Size
* Quantity
* Color saturation
* Color lightness
* Pattern
* Motion
* Categorical/Relational
* Symbol/Shape
* Color hue
* Connection/edge
* Containment
#### Chart types
* Chart types
* Bottom up
* Top down
* Chart classification
* Categorical
* Hierarchical
* Relational
* Temporal
* Spatial
## Lecture 6
### Charts zoo
## Lecture 7
### Practical Tips
1. Show your data
2. Use graphics
3. Avoid chart junks
4. Data ink ratio
5. Annotation
6. Micro/Macro
7. Layers
8. Small multiples
9. Color
10. Narrative
## Lecture 8
### Dimensionality reduction
* Linear
* PCA
* Multi dimensional scaling
* Non Linear
* t-SNE
* UMAP
* ISOMap
## Lecture 9
### PCA
* Real vector space
* Linear depdendence/independence
* Linear combination
* Linear transformation
* Eigen vectors/value
* Orthogonality
## Multi dimensional scaling
* Metric
* Non metric