--- title: 利用三角函數計算根號 tags: math, geometry --- # 利用三角函數計算根號 $x^2+y^2=r^2$ $x=\cfrac{n-1}{2}, r=\cfrac{n+1}{2}$ $\Rightarrow y=\sqrt n$ 已知 $x, r$,其滿足cos的公式條件,進而可以計算出θ角度值 $\cos \theta=\cfrac{x}{r} \Longrightarrow \theta=\cos^{-1}(\cfrac{x}{r})=\cos^{-1}(\cfrac{n-1}{n+1})$ 得 $y=r\sin(\cos^{-1}(\cfrac{n-1}{n+1}) )=\sin(\cos^{-1}(\cfrac{n-1}{n+1})$ $y=r\sin(\cos^{-1}(\cfrac{n-1}{n+1}) )=\cfrac{n+1}{2}\cdot\sqrt{1-(\cfrac{n-1}{n+1})^2}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up