--- tags: 機械学習 --- # CoralをRaspberry PIで動かす With TFLite ## Run demo `python3-pycoral`と`libedgetpu1-std`をドキュメントに従ってインストールする https://coral.ai/docs/accelerator/get-started/#runtime-on-windows その後、デモを動かす。 ```shell pi@raspberrypi:~/Workspace/coral/pycoral $ python3 examples/classify_image.py --model test_data/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite --labels test_data/inat_bird_labels.txt --input test_data/parrot.jpg ----INFERENCE TIME---- Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory. 17.3ms 4.4ms 5.3ms 4.4ms 4.4ms -------RESULTS-------- Ara macao (Scarlet Macaw): 0.75781 ``` ちなみに、Coralでやると。。。。 :thinking_face: ## TFLiteでAutoMLで学習済みのものを動かす kore wo sansho https://coral.ai/docs/edgetpu/tflite-python/#inferencing-example https://github.com/google-coral/pycoral/blob/master/examples/detect_image.py