## Deep GP (nullification) $cov = k_{**} - k_{*}(\frac{1}{\sigma^2}I - \frac{1}{\sigma^4}g^T(I+\frac{1}{\sigma^2}gg^T)^{-1}g)k_{*}^T$ Если раскрыть $k$ через $g$ $cov = g_{*}^Tg_{*} - g_{*}^Tg(\frac{1}{\sigma^2}I - \frac{1}{\sigma^4}g^T(I+\frac{1}{\sigma^2}gg^T)^{-1}g)g^Tg_{*}$ $cov = g_{*}^T(I - g(\frac{1}{\sigma^2}I - \frac{1}{\sigma^4}g^T(I+\frac{1}{\sigma^2}gg^T)^{-1}g)g^T)g_{*}$ $cov = g_{*}^T(I - \frac{1}{\sigma^2}gg^T + \frac{1}{\sigma^4}gg^T(I+\frac{1}{\sigma^2}gg^T)^{-1}gg^T)g_{*}$ Обозначим $Q = \frac{1}{\sigma^2}gg^T$ $cov = g_{*}^T(I - Q + Q(I+Q)^{-1}Q)g_{*}$ **При условии** $I << Q$ $(Q+I)^{-1} = (Q(I+Q^{-1}))^{-1} \approx (I-Q^{-1})Q^{-1}$ $cov \approx g_{*}^T(I - Q + Q(I-Q^{-1})Q^{-1}Q)g_{*} = g_{*}^T(I - Q + Q(I-Q^{-1}))g_{*}$ = 0
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up