Machine Learning Foundations Notes === > [回到專題目錄](https://hackmd.io/@meowhua/B1hQoPfHt) Home --- - [Machine Learning Foundations Note](/dCQjfClsTCq1cP0fGrsJrg) 1 - The Learning Problem --- - [The Learning Problem](/DskeVZqsSHed1anXwGA8QQ) 2 - Learning to Answer Yes/No --- - [Learning to Answer Yes/No](/brDN3c3fT_OpQDLilLGkgw) 3 - Types of Learning --- - [Types of Learning](/WwPboGTjQ36EKQgxc4vfDQ) 4 - Feasibility of Learning --- - [Feasibility of Learning](/s5xQisleSESzXTiQMat1ww) 5 - Training versus Testing --- - [Training versus Testing](/8QuBnRv4QveGXnf4dNVOHA) 6 - Theory of Generalization --- - [Theory of Generalization](/9H5RxzfLRUuNRRNuDGw_gw) 7 - The VC Dimension --- - [The VC Dimension](/uRPIqUadQYqJotu5wOJQbg) 8 - Noise and Error --- - [Noise and Error](/OT_lKI7EQO2FSzdrhV43DQ) 9 - Linear Regression --- - [Linear Regression](/BvPjzDsqTkSO9QBuwgaNRQ) 10 - Logistic Regression --- - [Logistic Regression](/Il4xO-CbSj2WSZetLPa7PQ) 11 - Linear Model for Classification --- - [Linear Model for Classification](/guCPHOubSeeeyR333Vqpdw) 12 - Nonlinear Transformation --- - [Nonlinear Transformation](/6Bc4l9JCSp-QvZhZ4tK0-w) 13 - Hazard of Overfitting --- - [Hazard of Overfitting](/bfwWZEY0S0Ou3MJpIbGRGg) 14 - Regularization --- - [Regularization](/tMVl6gFRRJiP9UXka3AfGw) 15 - Validation --- - [Validation](/cEvSOdUoTtaClQd2-ge_gw) 16 - Three Learning Principles --- - [Three Learning Principles](/RYTo8Ws5TPOfrFe9jPxG0g) --- ###### tags: `Machine Learning Foundations`
{"metaMigratedAt":"2023-06-16T12:15:19.467Z","metaMigratedFrom":"Content","title":"Machine Learning Foundations Notes","breaks":true,"contributors":"[{\"id\":\"27070ea2-4b52-41da-8d18-b986c626638d\",\"add\":4166,\"del\":2638}]"}
Expand menu