# panda data analyze ## Series ```python= import pandas # Usually, we will set pandas as pd # create column column = pandas.Series([12,32,43,12]) print(column) print("print Max",column.max()) print("print min",column .min()) print("print media",column.median()) print("print arerage",column.mean()) column*=2 #the column multiple 2 print(column) # column=column==24 print(column) ``` ## Dataframe ```python= Dim2Data=pandas.DataFrame( { "name":["jacky","mandy","meowhecker"], "salary":[999999999,12,9999999999999999999999999999], "age":[20,40,23] },index={"a","b","c"} #set up table index ) print(Dim2Data) print("=======================================") #basis information print(Dim2Data.iloc[2]) #iloc=I location -> using list show the row , sequence print("data_type"+"(rows,columns)",Dim2Data.shape) print("data index",Dim2Data.index) print("======================================") print(Dim2Data.loc["c"],sep="\n") # lic -> indext ``` ```python= # calculate the average of salarys columnSalary = Dim2Data["salary"] ''' total = columnSalary[0]+columnSalary[1] print(total) ''' print(columnSalary.mean()) # mean get average ``` ## Create new columns ```python= import pandas as pd Dim2Data=pandas.DataFrame( { "name":["jacky","mandy","meowhecker"], "salary":[9921319,23213421,99999], "age":[20,40,23] }, index=range(3) #set up table index ) Dim2Data["rank"] = pandas.Series([3,2,1]) # 正式寫法 Dim2Data["test"] = [1,2,3] # 偷懶寫法 print(Dim2Data) ``` # Fillter data ```python= import pandas testColumn = pandas.Series([54,23,90]) #filter value condition = testColumn>30 print("filterCondition",condition,sep="\n") print("=================================================") filterTestColumn = testColumn[condition] print(filterTestColumn,sep="\n") print("=================================================") testColumn2 = pandas.Series(["智晟王者","家偉盜賊","冠霖盜賊"]) print(testColumn2) print("===================================================") print("display what you want to show") stringCondition= testColumn2.str.contains("王者") #options #stringCondition = [True,False,True,] testColumn2 = testColumn2[stringCondition] print(testColumn2) print("==================================================") studentTable = pandas.DataFrame( { "name":["智晟","家偉","冠霖","佑豪"], "score":[100,80,75,34,] } ) print(studentTable) print("=================================================") print("pass > 60") condition = studentTable["score"] >= 60 #condition = [True,False,False,True] print(studentTable[condition]) print("==================================================") print("取得智晟的成績") condition = studentTable["name"] == "智晟" print(studentTable[condition]) ``` # Analyze Data resource file : by 澎澎 youtuber video ```python= # Analyze data import pandas #to read the data and to ransport csv into dataFrame dataTable = pandas.read_csv("googleplaystore.csv") print(dataTable) print("==================================================") print("trying to get information") print("table 大概的形狀", dataTable.shape) print("tuble columns",dataTable.columns) print("==================================================") print("Showing data that is we want to know.") print(dataTable["Rating"]) rating = dataTable["Rating"] print("Average of Rating", rating.mean()) print("MedianNumber of Rating", rating.median()) print("前一百名 rating 平均",rating.nlargest(100).mean()) print("===================================================") print("找出奇怪的數值") condictionFindOver5 = rating >5 print(dataTable[condictionFindOver5]) print("===================================================") print("Exclude the odd data") conditionExcludeOver5 = rating <=5 exData = dataTable[conditionExcludeOver5] print(exData) print("前一百名 rating 平均",exData["Rating"].nlargest(100).mean()) print("====================================================") print("to Analye Install") print(dataTable.columns) print(dataTable["Installs"]) print("=======================================================") print("filter the odd data ") # We could know odd charator (+ and ,) dataTable["Installs"] = pandas.to_numeric(dataTable["Installs"].str.replace("[+,]","").replace("Free","")) #print(dataTable["Installs"][10472]) # Fucking Free print("Average of install is ", dataTable["Installs"].mean()) over100000Condition = dataTable["Installs"]> 100000 print("Over 100000 installed ",dataTable[over100000Condition].shape) print("========================================================") print("Using keywords search the APP") keywords = input("Enter the keywords") conditionKeyword = dataTable["App"].str.contains(keywords,case= False) # contains(variable, ignore 大小寫) print("The result of a searching is:", dataTable[conditionKeyword]) ```