--- tags: 機率與統計 title: 第三週活動 --- # 第三週-課堂活動 ### (一) 機率分布練習 (1) A mail-order computer business has six telephone lines. Let x denote the number of lines at use at a specified time. Suppose the mass function of x is given by: x 0 1 2 3 4 5 6 p(x) .10 .15 .20 .25 .20 ? ? (a) In the long run, what proportion of the time will at most 3 lines be in use? Fewer than three lines? >$0.1+0.15+0.2+0.25=0.7$ >$0.1+0.15+0.2=0.45$ (b) In the long run, what proportion of the time will at least five lines be in use? >$1-0.1-0.15-0.2-0.25-0.2=0.1$ (c) In the long run, what proportion of the time will between two and four lines, inclusive, be in use? >$0.2+0.25+0.2=0.65$ (d) In the long run, what proportion of the time will at least four lines not be in use? >$0.1+0.15+0.2=0.45$ > --- (2) A continuous variable X is said to have a uniform distribution if the density function is given by ![](https://i.imgur.com/2vBIx3C.png) The corresponding density "curve" has constant height over the interval from a to b. Suppose the time (min) taken by a clerk to process a certain application form has a uniform distribution with a = 4 and the b = 6. (a) In the long run, what proportion of forms will take between 4.5 min and the 5.5 min to process? At least 4.5 min to process? >$(5.5-4.5)*0.5=0.5$ >$(6-4.5)*0.5=0.75$ (b) What value separates the slowest 50% of all processing times from the fastest 50% (the median of the distribution)? >$(6-4)/2+4=5$ (d) What value separates the best 10% of all processing times from the remaining 90%? >$(6-4)/10+4=4.2$ ### (二) 期望值:平均數與變異數 (1) Let x denote the amount of time for which a book on two-hour reserve at a college library is checked out by a student, and suppose that x has density function f(x)=.5x for 0 < x < 2. (a) What is the mean value of X? Why is the mean value not 1, the midpoint of the interval of positive density? >$\int f(x)dx=\int0.5x dx=0.25x$ >$2*0.25=0.5$ >因為不是平均的 (b) What is the median of this distribution, and how does it compare to the mean value? >中位數 1 平均數 0.5 >中位數>平均數 (c) What proportion of checkout times are within one-half hour of the mean time? What proportion are within one-half hour of the median time? >$f(0.5)=0.5*0.5=0.25$ > --- (2) Let x represent the number of underinflated tires on an automobile of a certain type, and suppose that p(0)= .4, p(1)=p(2)=p(3)=.1, and p(4)= .3. (a) Calculate the mean of the distribution. >$0.4*0+0.1*(1+2+3)+0.3*4=1.8$ (b) Calculate the standard deviation of x. >$(0.4+0.1*3+0.3)/5=0.2$ >$(0.4-0.2)^2+(0.1-0.2)^2*3+(0.3-0.2)^2=0.08$ >$\sqrt0.08=0.28$ (c) For what proportion of such cars will the number of underinflated tires be within one standard deviation of the mean value? More than three standard deviations from the mean value? >$0.4+0.1>0.2+0.28$ --- 第1題: 警方計劃在市區內四個不同位置使用雷達陷阱來取締超速。在L1, L2, L3和L4每個位置的雷達陷阱將有40%,30%,20%和30%的時間在運作。如果一個人在上班途中開快車,分別有0.2, 0.1,0.5和0.2的機率經過上述其中一個位置, (1) 則他會收到超速罰單的機率為? (2) 如果一個人在上班途中收到一張超速罰單,則他經過位於L2的雷達陷阱的機率為? ![](https://i.imgur.com/YcIMMGX.png) ============================================== 第2題: 在美國太空計劃的一個支援系統中,一個關鍵零件只有85%的時間正常運作。為了增強系統的可靠度,決定要將三個零件安裝成並聯,使得系統只有當他們全部失效時才會失效。假設零件獨立的運作,且他們三個全部都有85%的成功率,就此點而言他們是等效的。 考慮隨機變數X為三個之中失效的零件數量。 (1) 寫出隨機變數X的機率函數 (2) E(X)=? (也就是說三個之中失效的零件平均數) (3) Var(X)=? (4) 整體系統成功運作的機率=? (5) 系統失效的機率=? (6) 如果希望系統有0.99的機率成功運作,三個零件足夠嗎? 如果不夠需要多少個? ![](https://i.imgur.com/cBDLUxv.png) ========================================== 第3題. 某種工業公司分配在環境與污染控制上的預算比例即將被稽查。一個資料收集專案求得這些比例的分布為: f(y)={5(1−y)^4^,0≤y≤1 && 0,其他} (1) 驗證以上為有效的機率密度函數 ![](https://i.imgur.com/tqx2bK6.png) (2) 隨機選出的一間公司花在環境與污染控制的經費少於其預算10%的機率=? (3) 隨機選出的一間公司花在環境污染控制上的經費超過其預算50%的機率=? ![](https://i.imgur.com/l45Mb9c.png)