--- title: 111微積分(1) tags: 微積分一 --- ## 課前介紹 ### Some info - Office: Q617 - Office Hours: Tues 10:00 - 12:00 - cell: 0937749881 ### Calculus desc. Origin:From newton investigated Limits Most important Conception: Limits Newton's contribution : Find the relation between integration and differential(inverse relation 互逆關係) :::success Learn How to Learn ::: Topics: 1. 以函數為例子來求極限 1. 導數/微分公式 1. 微分的應用 Prerequisite: High School Math Grading: Daily Grade 40% Miderm 30% Final 30% Daily Grade computed by: Formuls = 50(base point) + 2*(Early Bird) + 2*(In Class Exercise/HomeWork) + 5*(quiz or miderm/final) + (Bouns Point) :::danger Homework Copying is strictly prohibited ::: 考試方式(待挑選): 跟學校考 -> 集中考試 自己考 -> open book ## 1.1 函數 A = $\pi r ^2$ dependent variable (A) = some compute with independent variable ( r ) >Function is realtion between dependent and independent variable > 集合A 按照對應法則 F 都可以在 集合B 中找到 "唯一" 一個相對應元素 y > 我們記之為 $y = f(x)$ > $range \subseteq setB$ **我們目前探討之微積分的 定義域 為 實數** 實數(可以被表示在數線上) = 有理數(可以被換成分數) + 無理數(循環小數 etc.) 開區間 $(a,b) = (x|a<x<b)$ 閉區間 $[a,b] = (x|a <= x <= b )$ 無窮區間 $(a,+\infty)$ 無限大不能是閉區間 ### 名詞: [常用名詞](http://amath2.nchu.edu.tw/hcwang/calculus_translation.html) inverse relation (互逆關係): 積分在微分後會變成自己 domain (定義域) range (值域) independent variable (自變數) dependent variable (應變數)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up