--- tags: 機率與統計 title: 第五週活動 --- # 第五週-課堂活動 ### 活動一 普瓦松程序,伽瑪與指數分布應用 (1) 假設某車廠維修中心的預約服務來電是依照一個普瓦松程序(Poisson Process),且平均每分鐘收到2.7通預約電話。求以下事件的機率: >$p(x,\lambda t)=\frac{e^{-\lambda t}\times (\lambda t)^x}{x!}$ (a) 在一分鐘內不超過4通來電的機率。 >$\sum\limits_{x=0}^4 \frac{e^{-2.7}\times 2.7^x}{x!}=0.8627$ (b) 在5分鐘內超過10通來電的機率。 >$\sum\limits_{x=0}^{10} \frac{e^{-13.5}\times 13.5^x}{x!}=0.7888$ ============================== (2) Data collected at Toronto Pearson International Airport suggests that an exponential distribution with λ=.37 is a good model for rainfall duration in hours. Answer the following questions: (a) What proportion of rainfall duration at this location are at least 2 hours? >$\int_{0}^{a}\lambda e^{-\lambda x}dx$ >$\int_{0}^{2}\lambda e^{-\lambda x}dx=0.5228$ (b) What must the duration of a rainfall be to place it among the longest 5% of all times? >$\int_{0}^{a}\lambda e^{-\lambda x}dx=0.95$ >$-e^{-\lambda a}-(-e^{\lambda 0})=0.95$ >$-e^{-0.37a}+1=0.95$ >$e^{-0.37a}=0.05$ >$-0.37a=ln(0.05)$ >$a=8.09$ ============================== (3) 假設一家銀行只有一個櫃台,提供9個等待區座位。假設服務每個客戶固定需要2分鐘,客戶的平均到達率是5位/分鐘,請問一個客戶進門遇到客滿的機率是多少? >$\int xe^{-ax}dx=xe^{-ax}-e^{-ax}+c$ > ============================= ### 活動二: 聯合質量函式的應用 A large insurance agency provides service to a number of customers who have purchased the both a homeowner's policy and an automobile policy. For each type of policy, a deductible amount must be specified. Let x denote the homeowner's deductible amount and y denote the automobile deductible amount for a customer who has both types of policies. The joint mass function of a and y is as follows. joint mass function of f(x, y) y f(x, y) 0 250 500 x 200 .20 .10 .20 500 .05 .15 .30 (a) What proportion of customers have $500 deductible amounts for both types of policies ? >$0.2+0.3=0.5$ (b) What is the marginal mass function of x? What is the marginal mass function of y ? >$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy$